Your browser doesn't support javascript.
loading
Development of Tough Thermoplastic Elastomers by Leveraging Rigid-Flexible Supramolecular Segment Interplays.
Wang, Luping; Guo, Longfei; Zhang, Kaiqiang; Xia, Yuguo; Hao, Jingcheng; Wang, Xu.
Afiliación
  • Wang L; National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China.
  • Guo L; National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China.
  • Zhang K; National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China.
  • Xia Y; National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China.
  • Hao J; Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China.
  • Wang X; National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China.
Angew Chem Int Ed Engl ; 62(29): e202301762, 2023 Jul 17.
Article en En | MEDLINE | ID: mdl-37208825
ABSTRACT
Supramolecular interactions facilitate the development of tough multifunctional thermoplastic elastomers. However, the fundamental principles that govern supramolecular toughening are barely understood, and the rational design to achieve the desired high toughness remains daunting. Herein, we report a simple and robust method for toughening thermoplastic elastomers by rationally tailoring hard-soft phase separation structures containing rigid and flexible supramolecular segments. The introduced functional segments with distinct structural rigidities provide mismatched supramolecular interactions to efficiently tune the energy dissipation and bear an external load. The optimal supramolecular elastomer containing aromatic amide and acylsemicarbazide moieties demonstrates a record toughness (1.2 GJ m-3 ), extraordinary crack tolerance (fracture energy 282.5 kJ m-2 ), an ultrahigh true stress at break (2.3 GPa), good elasticity, healing ability, recyclability, and impact resistance. The toughening mechanism is validated by testing various elastomers, confirming the potential for designing and developing super-tough supramolecular materials with promising applications in aerospace and electronics.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2023 Tipo del documento: Article