Your browser doesn't support javascript.
loading
Connecting Suborganismal Data to Bioenergetic Processes: Killifish Embryos Exposed to a Dioxin-Like Compound.
Stevenson, Louise M; Muller, Erik B; Nacci, Diane; Clark, Bryan W; Whitehead, Andrew; Nisbet, Roger M.
Afiliación
  • Stevenson LM; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
  • Muller EB; Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA.
  • Nacci D; Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA.
  • Clark BW; Marine Science Institute, University of California, Santa Barbara, California, USA.
  • Whitehead A; Institut für Biologische Analytik und Consulting IBACON, Rossdorf, Germany.
  • Nisbet RM; Atlantic Coastal Environmental Sciences Division, Office of Research and Development, Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Narragansett, Rhode Island.
Environ Toxicol Chem ; 42(9): 2040-2053, 2023 09.
Article en En | MEDLINE | ID: mdl-37232404
ABSTRACT
A core challenge for ecological risk assessment is to integrate molecular responses into a chain of causality to organismal or population-level outcomes. Bioenergetic theory may be a useful approach for integrating suborganismal responses to predict organismal responses that influence population dynamics. We describe a novel application of dynamic energy budget (DEB) theory in the context of a toxicity framework (adverse outcome pathways [AOPs]) to make quantitative predictions of chemical exposures to individuals, starting from suborganismal data. We use early-life stage exposure of Fundulus heteroclitus to dioxin-like chemicals (DLCs) and connect AOP key events to DEB processes through "damage" that is produced at a rate proportional to the internal toxicant concentration. We use transcriptomic data of fish embryos exposed to DLCs to translate molecular indicators of damage into changes in DEB parameters (damage increases somatic maintenance costs) and DEB models to predict sublethal and lethal effects on young fish. By changing a small subset of model parameters, we predict the evolved tolerance to DLCs in some wild F. heteroclitus populations, a data set not used in model parameterization. The differences in model parameters point to reduced sensitivity and altered damage repair dynamics as contributing to this evolved resistance. Our methodology has potential extrapolation to untested chemicals of ecological concern. Environ Toxicol Chem 2023;422040-2053. © 2023 Oak Ridge National Laboratory and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fundulidae / Dioxinas / Dibenzodioxinas Policloradas / Rutas de Resultados Adversos Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals Idioma: En Revista: Environ Toxicol Chem Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fundulidae / Dioxinas / Dibenzodioxinas Policloradas / Rutas de Resultados Adversos Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals Idioma: En Revista: Environ Toxicol Chem Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos