Your browser doesn't support javascript.
loading
FOXC1 Promotes Osteoblastic Differentiation of Bone Marrow Mesenchymal Stem Cells via the Dnmt3b/CXCL12 Axis.
Zhang, Peiguang; Feng, Bo; Dai, Guangming; Niu, Kecheng; Zhang, Lan.
Afiliación
  • Zhang P; Department of Orthopedics, The Third Affiliated Hospital, Inner Mongolia Medical University, No. 20 Shaoxian Road, Kundulun District, Baotou, 014010, Inner Mongolia, People's Republic of China.
  • Feng B; Department of Orthopedics, The Third Affiliated Hospital, Inner Mongolia Medical University, No. 20 Shaoxian Road, Kundulun District, Baotou, 014010, Inner Mongolia, People's Republic of China.
  • Dai G; Department of Orthopedics, The Third Affiliated Hospital, Inner Mongolia Medical University, No. 20 Shaoxian Road, Kundulun District, Baotou, 014010, Inner Mongolia, People's Republic of China.
  • Niu K; Department of Orthopedics, The Third Affiliated Hospital, Inner Mongolia Medical University, No. 20 Shaoxian Road, Kundulun District, Baotou, 014010, Inner Mongolia, People's Republic of China.
  • Zhang L; Department of Orthopedics, The Third Affiliated Hospital, Inner Mongolia Medical University, No. 20 Shaoxian Road, Kundulun District, Baotou, 014010, Inner Mongolia, People's Republic of China. lanzhang19888@163.com.
Biochem Genet ; 62(1): 176-192, 2024 Feb.
Article en En | MEDLINE | ID: mdl-37306827
ABSTRACT
Bone defects have remained a clinical problem in current orthopedics. Bone marrow mesenchymal stem cells (BM-MSCs) with multi-directional differentiation ability have become a research hotspot for repairing bone defects. In vitro and in vivo models were constructed, respectively. Alkaline phosphatase (ALP) staining and alizarin red staining were performed to detect osteogenic differentiation ability. Western blotting (WB) was used to detect the expression of osteogenic differentiation-related proteins. Serum inflammatory cytokine levels were detected by ELISA. Fracture recovery was evaluated by HE staining. The binding relationship between FOXC1 and Dnmt3b was verified by dual-luciferase reporter assay. The relationship between Dnmt3b and CXCL12 was explored by MSP and ChIP assays. FOXC1 overexpression promoted calcium nodule formation, upregulated osteogenic differentiation-related protein expression, promoted osteogenic differentiation, and decreased inflammatory factor levels in BM-MSCs, and promoted callus formation, upregulated osteogenic differentiation-related protein expression, and downregulated CXCL12 expression in the mouse model. Furthermore, FOXC1 targeted Dnmt3b, with Dnmt3b knockdown decreasing calcium nodule formation and downregulating osteogenic differentiation-related protein expression. Additionally, inhibiting Dnmt3b expression upregulated CXCL12 protein expression and inhibited CXCL12 methylation. Dnmt3b could be binded to CXCL12. CXCL12 overexpression attenuated the effects of FOXC1 overexpression and inhibited BM-MSCs osteogenic differentiation. This study confirmed that the FOXC1-mediated regulation of the Dnmt3b/CXCL12 axis had positive effects on the osteogenic differentiation of BM-MSCs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: MicroARNs / Células Madre Mesenquimatosas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Biochem Genet Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: MicroARNs / Células Madre Mesenquimatosas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Biochem Genet Año: 2024 Tipo del documento: Article