Your browser doesn't support javascript.
loading
Use of Electronic Health Record Data for Drug Safety Signal Identification: A Scoping Review.
Davis, Sharon E; Zabotka, Luke; Desai, Rishi J; Wang, Shirley V; Maro, Judith C; Coughlin, Kevin; Hernández-Muñoz, José J; Stojanovic, Danijela; Shah, Nigam H; Smith, Joshua C.
Afiliación
  • Davis SE; Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End Ave, Suite 1475, Nashville, TN, 37203, USA.
  • Zabotka L; Vanderbilt University School of Medicine, Nashville, TN, USA.
  • Desai RJ; Brigham and Women's Hospital, Boston, MA, USA.
  • Wang SV; Brigham and Women's Hospital, Boston, MA, USA.
  • Maro JC; Harvard Medical School, Boston, MA, USA.
  • Coughlin K; Brigham and Women's Hospital, Boston, MA, USA.
  • Hernández-Muñoz JJ; Harvard Medical School, Boston, MA, USA.
  • Stojanovic D; Harvard Medical School, Boston, MA, USA.
  • Shah NH; Harvard Pilgrim Health Care Institute, Boston, MA, USA.
  • Smith JC; Harvard Pilgrim Health Care Institute, Boston, MA, USA.
Drug Saf ; 46(8): 725-742, 2023 08.
Article en En | MEDLINE | ID: mdl-37340238
INTRODUCTION: Pharmacovigilance programs protect patient health and safety by identifying adverse event signals through postmarketing surveillance of claims data and spontaneous reports. Electronic health records (EHRs) provide new opportunities to address limitations of traditional approaches and promote discovery-oriented pharmacovigilance. METHODS: To evaluate the current state of EHR-based medication safety signal identification, we conducted a scoping literature review of studies aimed at identifying safety signals from routinely collected patient-level EHR data. We extracted information on study design, EHR data elements utilized, analytic methods employed, drugs and outcomes evaluated, and key statistical and data analysis choices. RESULTS: We identified 81 eligible studies. Disproportionality methods were the predominant analytic approach, followed by data mining and regression. Variability in study design makes direct comparisons difficult. Studies varied widely in terms of data, confounding adjustment, and statistical considerations. CONCLUSION: Despite broad interest in utilizing EHRs for safety signal identification, current efforts fail to leverage the full breadth and depth of available data or to rigorously control for confounding. The development of best practices and application of common data models would promote the expansion of EHR-based pharmacovigilance.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Sistemas de Registro de Reacción Adversa a Medicamentos / Registros Electrónicos de Salud Tipo de estudio: Diagnostic_studies / Guideline / Prognostic_studies / Systematic_reviews Límite: Humans Idioma: En Revista: Drug Saf Asunto de la revista: TERAPIA POR MEDICAMENTOS / TOXICOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Sistemas de Registro de Reacción Adversa a Medicamentos / Registros Electrónicos de Salud Tipo de estudio: Diagnostic_studies / Guideline / Prognostic_studies / Systematic_reviews Límite: Humans Idioma: En Revista: Drug Saf Asunto de la revista: TERAPIA POR MEDICAMENTOS / TOXICOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos