Your browser doesn't support javascript.
loading
Telematics data for geospatial and temporal mapping of urban mobility: Fuel consumption, and air pollutant and climate-forcing emissions of passenger cars.
Ghaffarpasand, Omid; Pope, Francis D.
Afiliación
  • Ghaffarpasand O; School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, UK.
  • Pope FD; School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, UK. Electronic address: f.pope@bham.ac.uk.
Sci Total Environ ; 894: 164940, 2023 Oct 10.
Article en En | MEDLINE | ID: mdl-37343888
ABSTRACT
In this study, we use the approach of geospatial and temporal (GeoST) mapping of urban mobility to evaluate the speed-time-acceleration profile (dynamic status) of passenger cars. We then use a pre-developed model, fleet composition and real-world emission factor (EF) datasets to translate vehicles dynamics status into real-urban fuel consumption (FC) and exhaustive (CO2 and NOx) emissions with high spatial (15 m) and temporal (2 h) resolutions. Road transport in the West Midlands, UK, for 2016 and 2018 is the spatial and temporal scope of this study. Our approach enables the analysis of the influence of factors such as road slope, non-rush/rush hour and weed days/weekends effects on the characteristics of the transport environment. The results show that real-urban NOx EFs reduced by more than 14 % for 2016-18. This can be attributed to the increasing contribution of Euro 6 vehicles by 63 %, and the increasing contribution of diesel vehicles by 13 %. However, the variations in the real-urban FC and CO2 EFs are less significant (±2 %). We found that the FC estimated for driving under the NEDC (National European Driving Cycle) is a qualified benchmark for evaluating real-urban FCs. Considering the role of road slope increases the estimated real-urban FC, and NOx, and CO2 EFs by a weighted average of 4.8 %, 3.9 %, and 3.0 %, respectively. Time of travel (non-rush/rush hour or weed days/weekends) has a profound effect on vehicle fuel consumption and related emissions, with EFs increasing in more free-flowing conditions.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Total Environ Año: 2023 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Total Environ Año: 2023 Tipo del documento: Article País de afiliación: Reino Unido