Your browser doesn't support javascript.
loading
Light-Driven Self-Oscillation of Thermoplasmonic Nanocolloids.
Mezzasalma, Stefano A; Kruse, Joscha; Merkens, Stefan; Lopez, Eneko; Seifert, Andreas; Morandotti, Roberto; Grzelczak, Marek.
Afiliación
  • Mezzasalma SA; Laboratory of Optics and Optical Thin Films, Materials Physics Division, Ruder Boskovic Institute, Bijeniska cesta 54, Zagreb, 10000, Croatia.
  • Kruse J; LINXS - Institute for advanced Neutron and X-ray Science, Lund University, Ideon Building, Delta 5 Scheelevägen 19, 223 70, Lund, Sweden.
  • Merkens S; Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 5, Donostia-San Sebastián, 20018, Spain.
  • Lopez E; CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-Sebastián, 20018, Spain.
  • Seifert A; CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-Sebastián, 20018, Spain.
  • Morandotti R; CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-Sebastián, 20018, Spain.
  • Grzelczak M; IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain.
Adv Mater ; 35(41): e2302987, 2023 Oct.
Article en En | MEDLINE | ID: mdl-37343949
Self-oscillation-the periodic change of a system under a non-periodic stimulus-is vital for creating low-maintenance autonomous devices in soft robotics technologies. Soft composites of macroscopic dimensions are often doped with plasmonic nanoparticles to enhance energy dissipation and generate periodic response. However, while it is still unknown whether a dispersion of photonic nanocrystals may respond to light as a soft actuator, a dynamic analysis of nanocolloids self-oscillating in a liquid is also lacking. This study presents a new self-oscillator model for illuminated colloidal systems. It predicts that the surface temperature of thermoplasmonic nanoparticles and the number density of their clusters jointly oscillate at frequencies ranging from infrasonic to acoustic values. New experiments with spontaneously clustering gold nanorods, where the photothermal effect alters the interplay of light (stimulus) with the disperse system on a macroscopic scale, strongly support the theory. These findings enlarge the current view on self-oscillation phenomena and anticipate the colloidal state of matter to be a suitable host for accommodating light-propelled machineries. In broad terms, a complex system behavior is observed, which goes from periodic solutions (Hopf-Poincaré-Andronov bifurcation) to a new dynamic attractor driven by nanoparticle interactions, linking thermoplasmonics to nonlinearity and chaos.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Croacia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Croacia