Your browser doesn't support javascript.
loading
ExplaiNN: interpretable and transparent neural networks for genomics.
Novakovsky, Gherman; Fornes, Oriol; Saraswat, Manu; Mostafavi, Sara; Wasserman, Wyeth W.
Afiliación
  • Novakovsky G; Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.
  • Fornes O; Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.
  • Saraswat M; Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.
  • Mostafavi S; Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
  • Wasserman WW; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
Genome Biol ; 24(1): 154, 2023 06 27.
Article en En | MEDLINE | ID: mdl-37370113
Deep learning models such as convolutional neural networks (CNNs) excel in genomic tasks but lack interpretability. We introduce ExplaiNN, which combines the expressiveness of CNNs with the interpretability of linear models. ExplaiNN can predict TF binding, chromatin accessibility, and de novo motifs, achieving performance comparable to state-of-the-art methods. Its predictions are transparent, providing global (cell state level) as well as local (individual sequence level) biological insights into the data. ExplaiNN can serve as a plug-and-play platform for pretrained models and annotated position weight matrices. ExplaiNN aims to accelerate the adoption of deep learning in genomic sequence analysis by domain experts.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Genómica Tipo de estudio: Prognostic_studies Idioma: En Revista: Genome Biol Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2023 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Genómica Tipo de estudio: Prognostic_studies Idioma: En Revista: Genome Biol Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2023 Tipo del documento: Article País de afiliación: Canadá