ExplaiNN: interpretable and transparent neural networks for genomics.
Genome Biol
; 24(1): 154, 2023 06 27.
Article
en En
| MEDLINE
| ID: mdl-37370113
Deep learning models such as convolutional neural networks (CNNs) excel in genomic tasks but lack interpretability. We introduce ExplaiNN, which combines the expressiveness of CNNs with the interpretability of linear models. ExplaiNN can predict TF binding, chromatin accessibility, and de novo motifs, achieving performance comparable to state-of-the-art methods. Its predictions are transparent, providing global (cell state level) as well as local (individual sequence level) biological insights into the data. ExplaiNN can serve as a plug-and-play platform for pretrained models and annotated position weight matrices. ExplaiNN aims to accelerate the adoption of deep learning in genomic sequence analysis by domain experts.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Redes Neurales de la Computación
/
Genómica
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Genome Biol
Asunto de la revista:
BIOLOGIA MOLECULAR
/
GENETICA
Año:
2023
Tipo del documento:
Article
País de afiliación:
Canadá