Your browser doesn't support javascript.
loading
Compressive forces stabilize microtubules in living cells.
Li, Yuhui; Kucera, Ondrej; Cuvelier, Damien; Rutkowski, David M; Deygas, Mathieu; Rai, Dipti; Pavlovic, Tonja; Vicente, Filipe Nunes; Piel, Matthieu; Giannone, Grégory; Vavylonis, Dimitrios; Akhmanova, Anna; Blanchoin, Laurent; Théry, Manuel.
Afiliación
  • Li Y; Univ. Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris, France.
  • Kucera O; Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France.
  • Cuvelier D; Univ. Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris, France.
  • Rutkowski DM; Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France.
  • Deygas M; Department of Engineering Technology, South East Technological University, Waterford, Ireland.
  • Rai D; Institut Curie, UMR144, Paris, France.
  • Pavlovic T; Institut Pierre-Gilles de Gennes, Paris, France.
  • Vicente FN; Sorbonne Université, F-75005, Paris, France.
  • Piel M; Department of Physics, Lehigh University, Bethlehem, PA, USA.
  • Giannone G; Institut Curie, UMR144, Paris, France.
  • Vavylonis D; Institut Pierre-Gilles de Gennes, Paris, France.
  • Akhmanova A; Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
  • Blanchoin L; Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
  • Théry M; University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
Nat Mater ; 22(7): 913-924, 2023 Jul.
Article en En | MEDLINE | ID: mdl-37386067
ABSTRACT
Microtubules are cytoskeleton components with unique mechanical and dynamic properties. They are rigid polymers that alternate phases of growth and shrinkage. Nonetheless, the cells can display a subset of stable microtubules, but it is unclear whether microtubule dynamics and mechanical properties are related. Recent in vitro studies suggest that microtubules have mechano-responsive properties, being able to stabilize their lattice by self-repair on physical damage. Here we study how microtubules respond to cycles of compressive forces in living cells and find that microtubules become distorted, less dynamic and more stable. This mechano-stabilization depends on CLASP2, which relocates from the end to the deformed shaft of microtubules. This process seems to be instrumental for cell migration in confined spaces. Overall, these results demonstrate that microtubules in living cells have mechano-responsive properties that allow them to resist and even counteract the forces to which they are subjected, being a central mediator of cellular mechano-responses.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Citoesqueleto / Microtúbulos Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Citoesqueleto / Microtúbulos Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Francia