Your browser doesn't support javascript.
loading
Effects of multi-heavy metal composite pollution on microorganisms around a lead-zinc mine in typical karst areas, southwest China.
Zuo, Yingying; Li, Ying; Chen, Hu; Ran, Gang; Liu, Xiuming.
Afiliación
  • Zuo Y; College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 5621
  • Li Y; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China.
  • Chen H; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China.
  • Ran G; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China.
  • Liu X; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China. Electronic address: liuxiuming@vip.skleg.cn.
Ecotoxicol Environ Saf ; 262: 115190, 2023 Jun 28.
Article en En | MEDLINE | ID: mdl-37390724
ABSTRACT
Heavy metal pollution poses a serious hazard to the soil bacterial community. The purpose of this study is to understand the characteristics of soil heavy metal pollution in lead-zinc mines in karst areas and the response of Pb, Zn, Cd, and As-induced composite pollution to soil microorganisms. This paper selected soil samples from the lead-zinc mining area of Xiangrong Mining Co., Ltd., Puding County, Guizhou Province, China. The soil in the mining area is contaminated by multiple heavy metals such as Pb, Zn, Cd and As. The average levels of Pb, Zn, Cd and As in the Pb-Zn mining soil were 14.5, 7.8, 5.5 and 4.4 times higher than the soil background in this area, respectively. Bacterial community structures and functions were analyzed using 16 S rRNA high-throughput sequencing technology and the PICRUSt method. A total of 19 bacterial phyla, 34 classes and 76 orders were detected in the tested soil. At the phylum level, the Proteobacteria are the dominant flora of the soil in the tailings reservoir area of the lead-zinc mine, respectively GWK1 (49.64%), GWK2 (81.89%), GWK3 (95.16%); and for the surrounding farmland soil, the Proteobacteria, Actinobacteriota, Acidobacteriota, Chloroflexi and Firmicutes are the most abundant in five bacterial groups. RDA analyses revealed that the heavy metal pollution of the lead-zinc mining area has a significant impact on the diversity of soil microorganisms. As the distance from the mining area increased, the heavy metal comprehensive pollution and potential risk value decreased, and the bacterial diversity increased. Additionally, various types of heavy metals have different effects on bacterial communities, and soil heavy metal content will also change the bacterial community structure. Proteobacteria positively related to Pb, Cd, and Zn, therefore, Proteobacteria were highly resistant to heavy metals. PICRUSt analysis suggested that heavy metals significantly affect the metabolic function of microorganisms. Microorganisms might generate resistance and enable themselves to survive by increasing the transport of metal ions and excreting metal ions. These results can be used as a basis for the microbial remediation of heavy metal-contaminated farmland in mining areas.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Ecotoxicol Environ Saf Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Ecotoxicol Environ Saf Año: 2023 Tipo del documento: Article