Your browser doesn't support javascript.
loading
Variational deep learning of equilibrium transition path ensembles.
Singh, Aditya N; Limmer, David T.
Afiliación
  • Singh AN; Department of Chemistry, University of California, Berkeley, California 94720, USA.
  • Limmer DT; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
J Chem Phys ; 159(2)2023 Jul 14.
Article en En | MEDLINE | ID: mdl-37435942
ABSTRACT
We present a time-dependent variational method to learn the mechanisms of equilibrium reactive processes and efficiently evaluate their rates within a transition path ensemble. This approach builds off of the variational path sampling methodology by approximating the time-dependent commitment probability within a neural network ansatz. The reaction mechanisms inferred through this approach are elucidated by a novel decomposition of the rate in terms of the components of a stochastic path action conditioned on a transition. This decomposition affords an ability to resolve the typical contribution of each reactive mode and their couplings to the rare event. The associated rate evaluation is variational and systematically improvable through the development of a cumulant expansion. We demonstrate this method in both over- and under-damped stochastic equations of motion, in low-dimensional model systems, and in the isomerization of a solvated alanine dipeptide. In all examples, we find that we can obtain quantitatively accurate estimates of the rates of the reactive events with minimal trajectory statistics and gain unique insights into transitions through the analysis of their commitment probability.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Chem Phys Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Chem Phys Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos