Your browser doesn't support javascript.
loading
Balancing potato yield, soil nutrient supply, and nitrous oxide emissions: An analysis of nitrogen application trade-offs.
Ning, Linyirui; Xu, Xinpeng; Qiu, Shaojun; Lei, Qiuliang; Zhang, Yitao; Luo, Jiafa; Ding, Wencheng; Zhao, Shicheng; He, Ping; Zhou, Wei.
Afiliación
  • Ning L; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing
  • Xu X; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing
  • Qiu S; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing
  • Lei Q; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing
  • Zhang Y; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China.
  • Luo J; AgResearch Ruakura, Hamilton 3240, New Zealand.
  • Ding W; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing
  • Zhao S; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing
  • He P; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing
  • Zhou W; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing
Sci Total Environ ; 899: 165628, 2023 Nov 15.
Article en En | MEDLINE | ID: mdl-37467970
Potato has been promoted as a national key staple food to alleviate pressure on food security in China. Appropriate nitrogen (N) application rate is prerequisite and is crucial for increasing yield, improving fertilizer efficiency, and reducing N losses. In the present study, we determined the optimum N application rates by analyzing field trial data from the main potato producing areas of China between 2004 and 2020. We considered the equilibrium relationships between potato yield, N uptake, partial N balance (PNB), and N2O emission under different soil indigenous N supply (INS) scenarios. The results showed that N rate, INS, and their interactions all significantly affect potato yield and nutrient uptake increment. On average, N application increased potato yield and N uptake by 29.5 % and 56.7 %, respectively. The relationship between N rate and yield increment was linear-plateau, while the relationship between N rate and N uptake increment was linear-linear. Soil INS accounted for 63.5 % of total potato N requirement. Potato yield increment and nutrient uptake increment were exponentially negatively correlated with INS and had a significant parabolic-nonlinear relationship with the interaction of N fertilizer application rate and INS. PNB was negatively correlated with fertilizer N supply intensity as a power function. Based on our analysis, a N application rate of 166 kg N ha-1 was found to be sufficient when the target yield was <34 t ha-1. However, when the target yield reached 40, 50 and 60 t ha-1, the recommended N application rate increased to 182, 211, and 254 kg N ha-1, respectively, while ensuring N2O emissions low with an emission factor of 0.2 %. Our findings will help guide potato farming toward cleaner production without compromising environmental benefit.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Suelo / Solanum tuberosum País/Región como asunto: Asia Idioma: En Revista: Sci Total Environ Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Suelo / Solanum tuberosum País/Región como asunto: Asia Idioma: En Revista: Sci Total Environ Año: 2023 Tipo del documento: Article