Your browser doesn't support javascript.
loading
Classical and quantum trial wave functions in auxiliary-field quantum Monte Carlo applied to oxygen allotropes and a CuBr2 model system.
Amsler, Maximilian; Deglmann, Peter; Degroote, Matthias; Kaicher, Michael P; Kiser, Matthew; Kühn, Michael; Kumar, Chandan; Maier, Andreas; Samsonidze, Georgy; Schroeder, Anna; Streif, Michael; Vodola, Davide; Wever, Christopher.
Afiliación
  • Amsler M; Corporate Sector Research and Advance Engineering, Robert Bosch GmbH, Robert-Bosch-Campus 1, 71272 Renningen, Germany.
  • Deglmann P; BASF SE, Quantum Chemistry, Carl-Bosch-Str. 38, 67063 Ludwigshafen, Germany.
  • Degroote M; BASF Digital Solutions GmbH, Next Generation Computing, Pfalzgrafenstr. 1, 67056 Ludwigshafen, Germany.
  • Kaicher MP; Quantum Lab, Boehringer Ingelheim, Ingelheim am Rhein, Germany.
  • Kiser M; BASF Digital Solutions GmbH, Next Generation Computing, Pfalzgrafenstr. 1, 67056 Ludwigshafen, Germany.
  • Kühn M; Volkswagen AG, Ungererstr. 69, 80805 Munich, Germany.
  • Kumar C; TUM School of Natural Sciences, Technical University of Munich, Boltzmannstr. 10, 85748 Garching, Germany.
  • Maier A; BASF SE, Quantum Chemistry, Carl-Bosch-Str. 38, 67063 Ludwigshafen, Germany.
  • Samsonidze G; BASF Digital Solutions GmbH, Next Generation Computing, Pfalzgrafenstr. 1, 67056 Ludwigshafen, Germany.
  • Schroeder A; BMW Group, New Technology and Innovation, Parkring 19-23, 85748 Garching, Munich, Germany.
  • Streif M; Munich Re AG, Munich, Germany.
  • Vodola D; Robert Bosch LLC, Research and Technology Center, Sunnyvale, California 94085, USA.
  • Wever C; Corporate Sector Research and Advance Engineering, Robert Bosch GmbH, Robert-Bosch-Campus 1, 71272 Renningen, Germany.
J Chem Phys ; 159(4)2023 Jul 28.
Article en En | MEDLINE | ID: mdl-37522404
ABSTRACT
In this work, we test a recently developed method to enhance classical auxiliary-field quantum Monte Carlo (AFQMC) calculations with quantum computers against examples from chemistry and material science, representative of classes of industry-relevant systems. As molecular test cases, we calculate the energy curve of H4 and the relative energies of ozone and singlet molecular oxygen with respect to triplet molecular oxygen, which is industrially relevant in organic oxidation reactions. We find that trial wave functions beyond single Slater determinants improve the performance of AFQMC and allow it to generate energies close to chemical accuracy compared to full configuration interaction or experimental results. In the field of material science, we study the electronic structure properties of cuprates through the quasi-1D Fermi-Hubbard model derived from CuBr2, where we find that trial wave functions with both significantly larger fidelities and lower energies over a mean-field solution do not necessarily lead to AFQMC results closer to the exact ground state energy.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Chem Phys Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Chem Phys Año: 2023 Tipo del documento: Article País de afiliación: Alemania