Your browser doesn't support javascript.
loading
Intracellular spatially-targeted chemical chaperones increase native state stability of mutant SOD1 barrel.
Ribeiro, Sara S; Gnutt, David; Azoulay-Ginsburg, Salome; Fetahaj, Zamira; Spurlock, Ella; Lindner, Felix; Kuz, Damon; Cohen-Erez, Yfat; Rapaport, Hanna; Israelson, Adrian; Gruzman, Arie-Lev; Ebbinghaus, Simon.
Afiliación
  • Ribeiro SS; Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany.
  • Gnutt D; Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany.
  • Azoulay-Ginsburg S; Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany.
  • Fetahaj Z; Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany.
  • Spurlock E; Institute of Physical Chemistry II, Ruhr University, D-44780 Bochum, Germany.
  • Lindner F; Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
  • Kuz D; Institute of Physical Chemistry II, Ruhr University, D-44780 Bochum, Germany.
  • Cohen-Erez Y; Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany.
  • Rapaport H; Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany.
  • Israelson A; Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany.
  • Gruzman AL; Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany.
  • Ebbinghaus S; Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany.
Biol Chem ; 404(10): 909-930, 2023 09 26.
Article en En | MEDLINE | ID: mdl-37555646
ABSTRACT
Amyotrophic lateral sclerosis (ALS) is a progressive neurological disorder with currently no cure. Central to the cellular dysfunction associated with this fatal proteinopathy is the accumulation of unfolded/misfolded superoxide dismutase 1 (SOD1) in various subcellular locations. The molecular mechanism driving the formation of SOD1 aggregates is not fully understood but numerous studies suggest that aberrant aggregation escalates with folding instability of mutant apoSOD1. Recent advances on combining organelle-targeting therapies with the anti-aggregation capacity of chemical chaperones have successfully reduce the subcellular load of misfolded/aggregated SOD1 as well as their downstream anomalous cellular processes at low concentrations (micromolar range). Nevertheless, if such local aggregate reduction directly correlates with increased folding stability remains to be explored. To fill this gap, we synthesized and tested here the effect of 9 ER-, mitochondria- and lysosome-targeted chemical chaperones on the folding stability of truncated monomeric SOD1 (SOD1bar) mutants directed to those organelles. We found that compound ER-15 specifically increased the native state stability of ER-SOD1bar-A4V, while scaffold compound FDA-approved 4-phenylbutyric acid (PBA) decreased it. Furthermore, our results suggested that ER15 mechanism of action is distinct from that of PBA, opening new therapeutic perspectives of this novel chemical chaperone on ALS treatment.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Esclerosis Amiotrófica Lateral Límite: Humans Idioma: En Revista: Biol Chem Asunto de la revista: BIOQUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Esclerosis Amiotrófica Lateral Límite: Humans Idioma: En Revista: Biol Chem Asunto de la revista: BIOQUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Alemania