Your browser doesn't support javascript.
loading
NFYC-37 promotes tumor growth by activating the mevalonate pathway in bladder cancer.
Liu, Zefu; Zheng, Xianchong; Chen, Jiawei; Zheng, Lisi; Ma, Zikun; Chen, Lei; Deng, Minhua; Tang, Huancheng; Zhou, Liwen; Kang, Tiebang; Wu, Yuanzhong; Liu, Zhuowei.
Afiliación
  • Liu Z; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdon
  • Zheng X; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdon
  • Chen J; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdon
  • Zheng L; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China.
  • Ma Z; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdon
  • Chen L; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdon
  • Deng M; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdon
  • Tang H; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdon
  • Zhou L; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China.
  • Kang T; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China. Electronic address: kangtb@sysucc.org.cn.
  • Wu Y; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China. Electronic address: wuyzh@sysucc.org.cn.
  • Liu Z; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdon
Cell Rep ; 42(8): 112963, 2023 08 29.
Article en En | MEDLINE | ID: mdl-37561631
ABSTRACT
Dysregulation of transcription is a hallmark of cancer, including bladder cancer (BLCA). CRISPR-Cas9 screening using a lentivirus library with single guide RNAs (sgRNAs) targeting human transcription factors and chromatin modifiers is used to reveal genes critical for the proliferation and survival of BLCA cells. As a result, the nuclear transcription factor Y subunit gamma (NFYC)-37, but not NFYC-50, is observed to promote cell proliferation and tumor growth in BLCA. Mechanistically, NFYC-37 interacts with CBP and SREBP2 to activate mevalonate pathway transcription, promoting cholesterol biosynthesis. However, NFYC-50 recruits more of the arginine methyltransferase CARM1 than NFYC-37 to methylate CBP, which prevents the CBP-SREBP2 interaction and subsequently inhibits the mevalonate pathway. Importantly, statins targeting the mevalonate pathway can suppress NFYC-37-induced cell proliferation and tumor growth, indicating the need for conducting a clinical trial with statins for treating patients with BLCA and high NFYC-37 levels, as most patients with BLCA have high NFYC-37 levels.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias de la Vejiga Urinaria / Inhibidores de Hidroximetilglutaril-CoA Reductasas Límite: Humans Idioma: En Revista: Cell Rep Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias de la Vejiga Urinaria / Inhibidores de Hidroximetilglutaril-CoA Reductasas Límite: Humans Idioma: En Revista: Cell Rep Año: 2023 Tipo del documento: Article