Your browser doesn't support javascript.
loading
BRASSINOSTEROID-INSENSITIVE 2 regulates salt stress tolerance in Arabidopsis by promoting AGL16 activity.
Zhu, Tao; Li, Bingbing; Chen, Yanyan; Jing, Yi; Wang, Suxuan; Li, Wenxin; Gao, Ningya; Liao, Chunli; Wang, Lianzhe; Xiao, Fei; Li, Taotao.
Afiliación
  • Zhu T; College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China.
  • Li B; College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China.
  • Chen Y; College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China.
  • Jing Y; College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China.
  • Wang S; College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China.
  • Li W; College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China.
  • Gao N; College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China.
  • Liao C; College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China.
  • Wang L; College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China.
  • Xiao F; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China. Electronic address: feixiao@xju.edu.cn.
  • Li T; College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, 467036, Henan, China. Electronic address: ltt198906@163.com.
Biochem Biophys Res Commun ; 678: 17-23, 2023 10 20.
Article en En | MEDLINE | ID: mdl-37611348
ABSTRACT
Salt stress is a negative environmental factors to affecting plants. Salinity inhibits seed germination and root growth, which reduces the biomass of agricultural plants. BRASSINOSTEROID-INSENSITIVE2 (BIN2) functions as a signalling hub to integrate the perception and transduction of plant growth and stress tolerance by the phosphorylation of target proteins. However, only a small number of target molecules have been discovered thus far. In this study, we present evidence that BIN2 controls the post-transcriptional activity of AGL16. BIN2 interacts and phosphorylates AGL16, which increases AGL16 stability and transcriptional activity. Genetic testing showed that the agl16 mutant can restore the reduction in the seed germination rate and primary root growth of the bin2-1 mutant, while the overexpression of AGL16 in the bin2-3bil1bil2 mutant reduced the salt tolerance compared with bin2-3bil1bil2 in response to salt stress. Taken together, our data identify a BIN2-AGL16 core protein module that is mediates the inhibition of seed germination and primary root growth under salt stress.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Arabidopsis / Proteínas de Arabidopsis Tipo de estudio: Prognostic_studies Idioma: En Revista: Biochem Biophys Res Commun Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Arabidopsis / Proteínas de Arabidopsis Tipo de estudio: Prognostic_studies Idioma: En Revista: Biochem Biophys Res Commun Año: 2023 Tipo del documento: Article País de afiliación: China