Your browser doesn't support javascript.
loading
Modular architecture facilitates noise-driven control of synchrony in neuronal networks.
Yamamoto, Hideaki; Spitzner, F Paul; Takemuro, Taiki; Buendía, Victor; Murota, Hakuba; Morante, Carla; Konno, Tomohiro; Sato, Shigeo; Hirano-Iwata, Ayumi; Levina, Anna; Priesemann, Viola; Muñoz, Miguel A; Zierenberg, Johannes; Soriano, Jordi.
Afiliación
  • Yamamoto H; Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan.
  • Spitzner FP; Graduate School of Engineering, Tohoku University, Sendai, Japan.
  • Takemuro T; Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
  • Buendía V; Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan.
  • Murota H; Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.
  • Morante C; Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
  • Konno T; Department of Computer Science, University of Tübingen, Tübingen, Germany.
  • Sato S; Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada, Spain.
  • Hirano-Iwata A; Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan.
  • Levina A; Graduate School of Engineering, Tohoku University, Sendai, Japan.
  • Priesemann V; Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain.
  • Muñoz MA; Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain.
  • Zierenberg J; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
  • Soriano J; Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan.
Sci Adv ; 9(34): eade1755, 2023 08 25.
Article en En | MEDLINE | ID: mdl-37624893
ABSTRACT
High-level information processing in the mammalian cortex requires both segregated processing in specialized circuits and integration across multiple circuits. One possible way to implement these seemingly opposing demands is by flexibly switching between states with different levels of synchrony. However, the mechanisms behind the control of complex synchronization patterns in neuronal networks remain elusive. Here, we use precision neuroengineering to manipulate and stimulate networks of cortical neurons in vitro, in combination with an in silico model of spiking neurons and a mesoscopic model of stochastically coupled modules to show that (i) a modular architecture enhances the sensitivity of the network to noise delivered as external asynchronous stimulation and that (ii) the persistent depletion of synaptic resources in stimulated neurons is the underlying mechanism for this effect. Together, our results demonstrate that the inherent dynamical state in structured networks of excitable units is determined by both its modular architecture and the properties of the external inputs.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cognición / Neuronas Límite: Animals Idioma: En Revista: Sci Adv Año: 2023 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cognición / Neuronas Límite: Animals Idioma: En Revista: Sci Adv Año: 2023 Tipo del documento: Article País de afiliación: Japón