Your browser doesn't support javascript.
loading
Effects of three spontaneous ventilation modes on respiratory drive and muscle effort in COVID-19 pneumonia patients.
Simón, José Manuel Serrano; Montosa, Carolina Joya; Carmona, Juan Francisco Martínez; Amaya, Manuel Jesús Delgado; Castro, Javier Luna; Carmona, Ashlen Rodríguez; Pérez, José Castaño; Delgado, Marina Rodríguez; Centeno, Guillermo Besso; Lozano, José Antonio Benítez.
Afiliación
  • Simón JMS; Intensive Care Service, Hospital Universitario Reina Sofía, Córdoba, Spain. jm.serranosimon@gmail.com.
  • Montosa CJ; Intensive Care Service, Hospital La Merced, Osuna, Seville, Spain. jm.serranosimon@gmail.com.
  • Carmona JFM; Intensive Care Service, Hospital Regional Universitario de Málaga, Málaga, Spain.
  • Amaya MJD; Intensive Care Service, Hospital Regional Universitario de Málaga, Málaga, Spain.
  • Castro JL; Intensive Care Service, Hospital Regional Universitario de Málaga, Málaga, Spain.
  • Carmona AR; Intensive Care Service, Hospital Regional Universitario de Málaga, Málaga, Spain.
  • Pérez JC; Unidad Terapia Intensiva, Hospital El Carmen, Mendoza, Argentina.
  • Delgado MR; Intensive Care Service, Hospital Virgen de las Nieves, Granada, Spain.
  • Centeno GB; Intensive Care Service, Hospital La Merced, Osuna, Seville, Spain.
  • Lozano JAB; Unidad Terapia Intensiva, Clínica del Aconcagua, Villa Mercedes, San Luis, Argentina.
BMC Pulm Med ; 23(1): 333, 2023 Sep 08.
Article en En | MEDLINE | ID: mdl-37684557
ABSTRACT

BACKGROUND:

High drive and high effort during spontaneous breathing can generate patient self-inflicted lung injury (P-SILI) due to uncontrolled high transpulmonary and transvascular pressures, with deterioration of respiratory failure. P-SILI has been demonstrated in experimental studies and supported in recent computational models. Different treatment strategies have been proposed according to the phenotype of elastance of the respiratory system (Ers) for patients with COVID-19. This study aimed to investigate the effect of three spontaneous ventilation modes on respiratory drive and muscle effort in clinical practice and their relationship with different phenotypes. This was achieved by obtaining the following respiratory signals airway pressure (Paw), flow (V´) and volume (V) and calculating muscle pressure (Pmus).

METHODS:

A physiologic observational study of a series of cases in a university medical-surgical ICU involving 11 mechanically ventilated patients with COVID-19 pneumonia at the initiation of spontaneous breathing was conducted. Three spontaneous ventilation modes were evaluated in each of the patients pressure support ventilation (PSV), airway pressure release ventilation (APRV), and BiLevel positive airway pressure ventilation (BIPAP). Pmus was calculated through the equation of motion. For this purpose, we acquired the signals of Paw, V´ and V directly from the data transmission protocol of the ventilator (Dräger). The main physiological measurements were calculation of the respiratory drive (P0.1), muscle effort through the ΔPmus, pressure‒time product (PTP/min) and work of breathing of the patient in joules multiplied by respiratory frequency (WOBp, J/min).

RESULTS:

Ten mechanically ventilated patients with COVID-19 pneumonia at the initiation of spontaneous breathing were evaluated. Our results showed similar high drive and muscle effort in each of the spontaneous ventilatory modes tested, without significant differences between them median (IQR) P0.1 6.28 (4.92-7.44) cm H2O, ∆Pmus 13.48 (11.09-17.81) cm H2O, PTP 166.29 (124.02-253.33) cm H2O*sec/min, and WOBp 12.76 (7.46-18.04) J/min. High drive and effort were found in patients even with low Ers. There was a significant relationship between respiratory drive and WOBp and Ers, though the coefficient of variation widely varied.

CONCLUSIONS:

In our study, none of the spontaneous ventilatory methods tested succeeded in reducing high respiratory drive or muscle effort, regardless of the Ers, with subsequent risk of P-SILI.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Insuficiencia Respiratoria / COVID-19 Tipo de estudio: Etiology_studies / Guideline / Observational_studies / Prognostic_studies Límite: Humans Idioma: En Revista: BMC Pulm Med Año: 2023 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Insuficiencia Respiratoria / COVID-19 Tipo de estudio: Etiology_studies / Guideline / Observational_studies / Prognostic_studies Límite: Humans Idioma: En Revista: BMC Pulm Med Año: 2023 Tipo del documento: Article País de afiliación: España