Your browser doesn't support javascript.
loading
Respiration-driven methanotrophic growth of diverse marine methanogens.
Yan, Zhen; Du, Kaifeng; Yan, Yunfeng; Huang, Rui; Zhu, Fanping; Yuan, Xianzheng; Wang, Shuguang; Ferry, James G.
Afiliación
  • Yan Z; Shandong Key Laboratory of Water pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
  • Du K; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China.
  • Yan Y; Shandong Key Laboratory of Water pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
  • Huang R; Shandong Key Laboratory of Water pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
  • Zhu F; Shandong Key Laboratory of Water pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
  • Yuan X; Shandong Key Laboratory of Water pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
  • Wang S; Shandong Key Laboratory of Water pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
  • Ferry JG; Shandong Key Laboratory of Water pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
Proc Natl Acad Sci U S A ; 120(39): e2303179120, 2023 09 26.
Article en En | MEDLINE | ID: mdl-37729205
ABSTRACT
Anaerobic marine environments are the third largest producer of the greenhouse gas methane. The release to the atmosphere is prevented by anaerobic 'methanotrophic archaea (ANME) dependent on a symbiotic association with sulfate-reducing bacteria or direct reduction of metal oxides. Metagenomic analyses of ANME are consistent with a reverse methanogenesis pathway, although no wild-type isolates have been available for validation and biochemical investigation. Herein is reported the characterization of methanotrophic growth for the diverse marine methanogens Methanosarcina acetivorans C2A and Methanococcoides orientis sp. nov. Growth was dependent on reduction of either ferrihydrite or humic acids revealing a respiratory mode of energy conservation. Acetate and/or formate were end products. Reversal of the well-characterized methanogenic pathways is remarkably like the consensus pathways for uncultured ANME based on extensive metagenomic analyses.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Respiración / Euryarchaeota Tipo de estudio: Guideline Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Respiración / Euryarchaeota Tipo de estudio: Guideline Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2023 Tipo del documento: Article País de afiliación: China