Your browser doesn't support javascript.
loading
Sigma-1 receptor agonism exacerbates immune-driven nociception: Role of TRPV1 + nociceptors.
Ruiz-Cantero, M Carmen; Huerta, Miguel Á; Tejada, Miguel Á; Santos-Caballero, Miriam; Fernández-Segura, Eduardo; Cañizares, Francisco J; Entrena, José M; Baeyens, José M; Cobos, Enrique J.
Afiliación
  • Ruiz-Cantero MC; Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain.
  • Huerta MÁ; Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain.
  • Tejada MÁ; Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain.
  • Santos-Caballero M; Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain.
  • Fernández-Segura E; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain; Department of Histology, Faculty of Medicine, University of Granada, 18071 Granada, Spain.
  • Cañizares FJ; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain; Department of Histology, Faculty of Medicine, University of Granada, 18071 Granada, Spain.
  • Entrena JM; Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain.
  • Baeyens JM; Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain.
  • Cobos EJ; Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain; Teófilo Hernando Institute for
Biomed Pharmacother ; 167: 115534, 2023 Nov.
Article en En | MEDLINE | ID: mdl-37729726
ABSTRACT
The analgesic effects of sigma-1 antagonists are undisputed, but the effects of sigma-1 agonists on pain are not well studied. Here, we used a mouse model to show that the administration of the sigma-1 agonists dextromethorphan (a widely used antitussive drug), PRE-084 (a standard sigma-1 ligand), and pridopidine (a selective drug being investigated in clinical trials for the treatment of neurodegenerative diseases) enhances PGE2-induced mechanical hyperalgesia. Superficial plantar incision induced transient weight-bearing asymmetry at early time points, but the mice appeared to recover at 24 h, despite noticeable edema and infiltration of neutrophils (a well-known cellular source of PGE2) at the injured site. Sigma-1 agonists induced a relapse of weight bearing asymmetry in a manner dependent on the presence of neutrophils. The effects of sigma-1 agonists were all reversed by administration of the sigma-1 antagonist BD-1063 in wild-type mice, and were absent in sigma-1 knockout mice, supporting the selectivity of the effects observed. The proalgesic effects of sigma-1 agonism were also abolished by the TRP antagonist ruthenium red and by in vivo resiniferatoxin ablation of TRPV1 + peripheral sensory neurons. Therefore, sigma-1 agonism exacerbates pain-like responses in mice with a mild inflammatory state through the action of TRPV1 + nociceptors. We also show that sigma-1 receptors are present in most (if not all) mouse and human DRG neurons. If our findings translate to humans, further studies will be needed to investigate potential proalgesic effects induced by sigma-1 agonism in patients treated with sigma-1 agonists.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Biomed Pharmacother Año: 2023 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Biomed Pharmacother Año: 2023 Tipo del documento: Article País de afiliación: España