Your browser doesn't support javascript.
loading
Dual Functional Ultrasensitive Point-of-Care Clinical Diagnosis Using Metal-Organic Frameworks-Based Immunobeads.
Chai, Fengli; Wang, Dou; Shi, Fei; Zheng, Wenfu; Zhao, Xiaohui; Chen, Yao; Mao, Cuiping; Zhang, Jiangjiang; Jiang, Xingyu.
Afiliación
  • Chai F; Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
  • Wang D; Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
  • Shi F; Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong 518020, China.
  • Zheng W; Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, China.
  • Zhao X; Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
  • Chen Y; Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
  • Mao C; Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
  • Zhang J; Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
  • Jiang X; Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
Nano Lett ; 23(19): 9056-9064, 2023 Oct 11.
Article en En | MEDLINE | ID: mdl-37738391
ABSTRACT
Sepsis is an acute systemic infectious syndrome with high fatality. Fast and accurate diagnosis, monitoring, and medication of sepsis are essential. We exploited the fluorescent metal-AIEgen frameworks (MAFs) and demonstrated the dual functions of protein detection and bacteria identification (i) ultrasensitive point-of-care (POC) detection of sepsis biomarkers (100 times enhanced sensitivity); (ii) rapid POC identification of Gram-negative/positive bacteria (selective aggregation within 20 min). Fluorescent lateral flow immunoassays (LFAs) are convenient and inexpensive for POC tests. MAFs possess a large surface area, excellent photostability, high quantum yield (∼80%), and multiple active sites serving as protein binding domains for ultrasensitive detection of sepsis biomarkers (IL-6/PCT) on LFAs. The limit of detection (LOD) for IL-6/PCT is 0.252/0.333 pg/mL. Rapid appraisal of infectious bacteria is vital to guide the use of medicines. The dual-functional fluorescent MAFs have great potential in POC tests for the clinical diagnosis of bacterial infections.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article País de afiliación: China