The transcription factor DUX4 orchestrates translational reprogramming by broadly suppressing translation efficiency and promoting expression of DUX4-induced mRNAs.
PLoS Biol
; 21(9): e3002317, 2023 09.
Article
en En
| MEDLINE
| ID: mdl-37747887
Translational control is critical for cell fate transitions during development, lineage specification, and tumorigenesis. Here, we show that the transcription factor double homeobox protein 4 (DUX4), and its previously characterized transcriptional program, broadly regulates translation to change the cellular proteome. DUX4 is a key regulator of zygotic genome activation in human embryos, whereas misexpression of DUX4 causes facioscapulohumeral muscular dystrophy (FSHD) and is associated with MHC-I suppression and immune evasion in cancer. We report that translation initiation and elongation factors are disrupted downstream of DUX4 expression in human myoblasts. Genome-wide translation profiling identified mRNAs susceptible to DUX4-induced translation inhibition, including those encoding antigen presentation factors and muscle lineage proteins, while DUX4-induced mRNAs were robustly translated. Endogenous expression of DUX4 in human FSHD myotubes and cancer cell lines also correlated with reduced protein synthesis and MHC-I presentation. Our findings reveal that DUX4 orchestrates cell state conversion by suppressing the cellular proteome while maintaining translation of DUX4-induced mRNAs to promote an early developmental program.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Factores de Transcripción
/
Proteínas de Homeodominio
/
Distrofia Muscular Facioescapulohumeral
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
PLoS Biol
Asunto de la revista:
BIOLOGIA
Año:
2023
Tipo del documento:
Article
País de afiliación:
Estados Unidos