Your browser doesn't support javascript.
loading
A Coordination Polymer for the Fluorescence Turn-On Sensing of Saccharin, 2-Thiazolidinethione-4-carboxylic Acid, and Periodate.
Zhu, Shan; Wang, Qicheng; Wang, Xiaomei; Pan, Jiajun; Yang, Tao; Zhou, Xinhui; Xiao, Hongping; You, Yujian.
Afiliación
  • Zhu S; Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, Chin
  • Wang Q; Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, Chin
  • Wang X; Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, Chin
  • Pan J; Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, Chin
  • Yang T; Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, Chin
  • Zhou X; Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, Chin
  • Xiao H; College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
  • You Y; Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, Chin
Inorg Chem ; 62(40): 16589-16598, 2023 Oct 09.
Article en En | MEDLINE | ID: mdl-37757754
ABSTRACT
A luminescent 1D coordination polymer (CP) [Zn2L2(H2O)4]·H2O (1, H2L = 1-(4-carboxyphenyl)-1H-pyrazole-3-carboxylic acid) was prepared by a solvothermal method. 1 shows excellent fluorescence properties and has an obvious fluorescence "turn-on" phenomenon for saccharin (SAC), 2-thiazolidinethione-4-carboxylic acid (TTCA), and periodate (IO4-). Between 0 and 60 µM concentration range of SAC, the fluorescence enhancement efficiency (KEC) of 1 reaches 1.00 × 105 M-1 with the limit of detection (LOD) of 90 nM. 1 is the first CP-based sensing material for SAC detection. For TTCA detection, the KEC is 2.73 × 105 M-1 at the 25-80 µM concentration range, and the LOD is 33 nM, the lowest LOD among the sensors that detect TTCA at present. For IO4- ion detection, when the IO4- ion concentration ranges from 0 to 10 µM, the KEC is 2.34 × 105 M-1 and the LOD is as low as 39 nM. In order to better understand the sensing phenomenon, we also discuss in detail the sensing mechanisms for SAC, TTCA, and IO4- ions.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2023 Tipo del documento: Article