Your browser doesn't support javascript.
loading
Extremely Stable Perylene Bisimide-Bridged Regioisomeric Diradicals and Their Redox Properties.
Feng, Zhibin; Zhou, Jiadong; He, Xiandong; Wang, Bohan; Xie, Guojing; Qiao, Xianfeng; Liu, Linlin; Xie, Zengqi; Ma, Yuguang.
Afiliación
  • Feng Z; Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
  • Zhou J; Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
  • He X; Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
  • Wang B; Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
  • Xie G; Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
  • Qiao X; Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
  • Liu L; Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
  • Xie Z; Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
  • Ma Y; Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
Chemistry ; 30(2): e202302943, 2024 Jan 08.
Article en En | MEDLINE | ID: mdl-37803935
ABSTRACT
Excellent stability is an essential premise for organic diradicals to be used in organic electronic and spintronic devices. We have attached two tris(2,4,6-trichlorophenyl)methyl (TTM) radical building blocks to the two sides of perylene bisimide (PBI) bridges and obtained two regioisomeric diradicals (1,6-TTM-PBI and 1,7-TTM-PBI). Both of the isomers show super stability rather than the monomeric TTM under ambient conditions, due to the increased conjugation and the electron-withdrawing effects of the PBI bridges. The diradicals show distinct and reversible multistep redox processes, and a spectro-electrochemistry investigation revealed the generation of organic mixed-valence (MV) species during reduction processes. The two diradicals have singlet ground states, very small singlet-triplet energy gaps (ΔES-T ) and a pure open-shell character (with diradical character y0 =0.966 for 1,6-TTM-PBI and 0.967 for 1,7-TTM-PBI). This work opens a window to developing very stable diradicals and offers the opportunity of their further application in optical, electronic and magnetic devices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article