Your browser doesn't support javascript.
loading
Lentinan alleviates diabetic cardiomyopathy by suppressing CAV1/SDHA-regulated mitochondrial dysfunction.
Hu, Shuiqing; Luo, Jinlan; Guo, Ping; Du, Tingyi; Liu, Xiaohui; He, Miaomiao; Li, Jie; Ma, Tingqiong; Liu, Bo; Huang, Man; Fang, Qin; Wang, Yan.
Afiliación
  • Hu S; Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
  • Luo J; Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
  • Guo P; Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
  • Du T; Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
  • Liu X; Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
  • He M; Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
  • Li J; Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
  • Ma T; Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
  • Liu B; Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
  • Huang M; Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
  • Fang Q; Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China. Electronic address: fang
  • Wang Y; Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China. Electronic address: news
Biomed Pharmacother ; 167: 115645, 2023 Nov.
Article en En | MEDLINE | ID: mdl-37804808
ABSTRACT
Diabetic cardiomyopathy (DCM), characterized by mitochondrial dysfunction and impaired energetics as contributing factors, significantly contributes to high mortality in patients with diabetes. Targeting key proteins involved in mitochondrial dysfunction might offer new therapeutic possibilities for DCM. Lentinan (LNT), a ß-(1,3)-glucan polysaccharide obtained from lentinus edodes, has demonstrated biological activity in modulating metabolic syndrome. In this study, the authors investigate LNT's pharmacological effects on and mechanisms against DCM. The results demonstrate that administering LNT to db/db mice reduces cardiomyocyte apoptosis and mitochondrial dysfunction, thereby preventing DCM. Notably, these effects are fully negated by Caveolin-1 (CAV1) overexpression both in vivo and in vitro. Further studies and bioinformatics analysis uncovered that CAV1 bound with Succinate dehydrogenase subunit A (SDHA), triggering the following ubiquitination and degradation of SDHA, which leads to mitochondrial dysfunction and mitochondria-derived apoptosis under PA condition. Silencing CAV1 leads to reduced apoptosis and improved mitochondrial function, which is blocked by SDHA knockdown. In conclusion, CAV1 directly interacts with SDHA to promote ubiquitination and proteasomal degradation, resulting in mitochondrial dysfunction and mitochondria-derived apoptosis, which was depressed by LNT administration. Therefore, LNT may be a potential pharmacological agent in preventing DCM, and targeting the CAV1/SDHA pathway may be a promising therapeutic approach for DCM.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Diabetes Mellitus / Cardiomiopatías Diabéticas Límite: Animals / Humans Idioma: En Revista: Biomed Pharmacother Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Diabetes Mellitus / Cardiomiopatías Diabéticas Límite: Animals / Humans Idioma: En Revista: Biomed Pharmacother Año: 2023 Tipo del documento: Article País de afiliación: China