Your browser doesn't support javascript.
loading
Improving Cardiology-Rehospitalization Prediction Through the Synergy of Process Mining and Deep Learning: An Innovative Approach.
Spizzi, Eleonora; Quadraro, Damiano; Esposti, Federico; Ferrario, Manuela.
Afiliación
  • Spizzi E; Politecnico di Milano, Italy.
  • Quadraro D; Ospedale San Raffaele, Italy.
  • Esposti F; Ospedale San Raffaele, Italy.
  • Ferrario M; Ospedale San Raffaele, Italy.
Stud Health Technol Inform ; 309: 238-239, 2023 Oct 20.
Article en En | MEDLINE | ID: mdl-37869849
Nowadays, hospitals are facing the need for an accurate prediction of rehospitalizations. Rehospitalizations, indeed, represent both a high financial burden for the hospital and a proxy measure of care quality. The current work aims to address such a problem with an innovative approach, by building a Process Mining-Deep Learning model for the prediction of 6-months rehospitalization of patients hospitalized in a Cardiology specialty at San Raffaele Hospital, starting from their medical history contained in the Patients Hospital Records, with the double purpose of supporting resource planning and identifying at-risk patients.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cardiología / Aprendizaje Profundo Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2023 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cardiología / Aprendizaje Profundo Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2023 Tipo del documento: Article País de afiliación: Italia