Your browser doesn't support javascript.
loading
Microtubules under mechanical pressure can breach dense actin networks.
Gélin, Matthieu; Schaeffer, Alexandre; Gaillard, Jérémie; Guérin, Christophe; Vianay, Benoit; Orhant-Prioux, Magali; Braun, Marcus; Leterrier, Christophe; Blanchoin, Laurent; Théry, Manuel.
Afiliación
  • Gélin M; Université Paris cité, CEA, INSERM, Institut de Recherche Saint Louis, UMR976 HIPI, CytoMorpho Lab, Avenue Claude Vellefaux, 75010 Paris, France.
  • Schaeffer A; Université Paris cité, CEA, INSERM, Institut de Recherche Saint Louis, UMR976 HIPI, CytoMorpho Lab, Avenue Claude Vellefaux, 75010 Paris, France.
  • Gaillard J; Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, Avenue des Martyrs, 38054 Grenoble, France.
  • Guérin C; Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, Avenue des Martyrs, 38054 Grenoble, France.
  • Vianay B; Université Paris cité, CEA, INSERM, Institut de Recherche Saint Louis, UMR976 HIPI, CytoMorpho Lab, Avenue Claude Vellefaux, 75010 Paris, France.
  • Orhant-Prioux M; Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, Avenue des Martyrs, 38054 Grenoble, France.
  • Braun M; Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic.
  • Leterrier C; Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13385, Marseille, France.
  • Blanchoin L; Université Paris cité, CEA, INSERM, Institut de Recherche Saint Louis, UMR976 HIPI, CytoMorpho Lab, Avenue Claude Vellefaux, 75010 Paris, France.
  • Théry M; Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, Avenue des Martyrs, 38054 Grenoble, France.
J Cell Sci ; 136(22)2023 11 15.
Article en En | MEDLINE | ID: mdl-37870087
ABSTRACT
The crosstalk between the actin network and microtubules is essential for cell polarity. It orchestrates microtubule organization within the cell, driven by the asymmetry of actin architecture along the cell periphery. The physical intertwining of these networks regulates spatial organization and force distribution in the microtubule network. Although their biochemical interactions are becoming clearer, the mechanical aspects remain less understood. To explore this mechanical interplay, we developed an in vitro reconstitution assay to investigate how dynamic microtubules interact with various actin filament structures. Our findings revealed that microtubules can align and move along linear actin filament bundles through polymerization force. However, they are unable to pass through when encountering dense branched actin meshworks, similar to those present in the lamellipodium along the periphery of the cell. Interestingly, immobilizing microtubules through crosslinking with actin or other means allow the buildup of pressure, enabling them to breach these dense actin barriers. This mechanism offers insights into microtubule progression towards the cell periphery, with them overcoming obstacles within the denser parts of the actin network and ultimately contributing to cell polarity establishment.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Actinas / Microtúbulos Idioma: En Revista: J Cell Sci Año: 2023 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Actinas / Microtúbulos Idioma: En Revista: J Cell Sci Año: 2023 Tipo del documento: Article País de afiliación: Francia