Your browser doesn't support javascript.
loading
Preparation and Performance of Ferric-Rich Bauxite-Tailing-Based Thermal Storage Ceramics.
Wang, Qi; Fang, Minghao; Min, Xin; Du, Pengpeng; Huang, Zhaohui; Liu, Yangai; Wu, Xiaowen; Liu, Yulin; Liu, Changmiao; Huang, Feihui.
Afiliación
  • Wang Q; Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,
  • Fang M; Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,
  • Min X; Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,
  • Du P; Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,
  • Huang Z; Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,
  • Liu Y; Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,
  • Wu X; Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,
  • Liu Y; Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Zhengzhou 450006, China.
  • Liu C; Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Zhengzhou 450006, China.
  • Huang F; Shandong Aofu Environmental Technology Co., Ltd., Dezhou 251599, China.
Materials (Basel) ; 16(21)2023 Oct 27.
Article en En | MEDLINE | ID: mdl-37959497
In recent years, regenerative thermal oxidizer (RTO) has been widely used in the petroleum industry, chemical industry, etc. The massive storage required by solid waste has become a serious problem. Due to their chemical composition, bauxite tailings as raw materials for high-temperature thermal storage ceramics show enormous potential in the fields of research and application. In this study, we propose a method for preparing ferric-rich and high specific storage capacity by adding Fe2O3 powder to bauxite tailings. Based on a 7:3 mass ratio of bauxite tailings to lepidolite, Fe2O3 powder with different mass fractions (7 wt%, 15 wt%, 20 wt%, 30 wt%, and 40 wt%) was added to the ceramic material to improve the physical properties and thermal storage capacity of thermal storage ceramics. The results showed that ferric-rich thermal storage ceramics with optimal performance were obtained by holding them at a sintering temperature of 1000 °C for 2 h. When the Fe2O3 content was 15 wt%, the bulk density of the thermal storage ceramic reached 2.53 g/cm3, the compressive strength was 120.81 MPa, and the specific heat capacity was 1.06 J/(g·K). This study has practical guidance significance in the preparation of high thermal storage ceramics at low temperatures and low costs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2023 Tipo del documento: Article