Your browser doesn't support javascript.
loading
Hypericum perforatum L. protects against renal function decline in ovariectomy rat model by regulating expressions of NOS3 and AKT1 in AGE-RAGE pathway.
You, Xue-Lian; Zhao, Meng-Li; Liu, Yan-Ru; Tang, Zhi-Shu; Zhao, Yan-Ting; Song, Zhong-Xing.
Afiliación
  • You XL; Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China.
  • Zhao ML; Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China.
  • Liu YR; Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China. Electronic address: yanzi_2203@aliyun.com.
  • Tang ZS; Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China; Chinese Academy of Traditional Chinese Medicine,100700, Beijing, Chin
  • Zhao YT; Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China.
  • Yan-Liu; Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China.
  • Song ZX; Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, China.
Phytomedicine ; 123: 155160, 2024 Jan.
Article en En | MEDLINE | ID: mdl-37984122
ABSTRACT

BACKGROUND:

Hypericum perforatum L. (HPL) is a potential traditional Chinese medicine. It could promotes menopausal 'kidney-yin deficiency syndrome' that characterized by renal function decline. However, its potential pharmacological effect and mechanism remains unknown.

OBJECTIVE:

The aim of this study was to investigate whether HPL can improve menopausal renal function decline and to explore its mechanism of action.

METHODS:

The mainly ingredients of HPL were identified using UPLC-Q-TOF-MS/MS approach, and the potential therapeutic targets of HPL for renal function decline were chose via network pharmacology technique. The key therapeutic metabolites were selected through non-targeted metabolomic and chemometric methods. Then, the network were constructed and the key targets and metabolites were screened. At last, the validation experiments and mechanism exploring were adopted by using Immunofluorescence, enzyme-linked immunosorbent assay (ELISA), real-time PCR (RT-PCR), and western blotting assays.

RESULTS:

mainly ingredients of HPL were identified and determined 17 compounds and 29 targets were chose as mainly active compounds and potential therapeutic targets. Based on OVX induced renal decline rat model, after chemometric analysis, 59 endo-metabolites were selected as key therapeutic metabolites, and AGE-RAGE signal pathway in diabetes complications was enriched as the key pathway. By constructing a "disease-component-target" network, Hyperoside, Quercetrin, and quinic were selected as the key therapeutic compounds, and the AKT1 and NOS3 were selected as the key therapeutic targets. The results of ELISA, RT-PCR and western blot experiments indicated that HPL could rescue the abnormal expressions both of AKT1 and NOS3, as well as their related metabolites distortion.

CONCLUSION:

Our findings indicated that HPL regulated expression of AKT1 and NOS3 through modulating AGE-RAGE signaling pathway in OVX stimulated rats` renal dysfunction, implicating the potential values of HPL in menopause syndromes therapy.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Medicamentos Herbarios Chinos / Hypericum / Antineoplásicos Límite: Animals / Female / Humans Idioma: En Revista: Phytomedicine Asunto de la revista: TERAPIAS COMPLEMENTARES Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Medicamentos Herbarios Chinos / Hypericum / Antineoplásicos Límite: Animals / Female / Humans Idioma: En Revista: Phytomedicine Asunto de la revista: TERAPIAS COMPLEMENTARES Año: 2024 Tipo del documento: Article País de afiliación: China