Your browser doesn't support javascript.
loading
Identifying the function of the PI3K-AKT pathway during the pathogenic infection of Macrobrachium rosenbergii.
Zhan, Fanbin; Zhou, Shichun; Shi, Fei; Li, Qingqing; Lin, Li; Qin, Zhendong.
Afiliación
  • Zhan F; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
  • Zhou S; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
  • Shi F; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
  • Li Q; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
  • Lin L; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
  • Qin Z; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
J Fish Dis ; 47(2): e13890, 2024 Feb.
Article en En | MEDLINE | ID: mdl-37997435
ABSTRACT
The phosphoinositide-3-kinase/protein kinase b (PI3K-Akt) pathway is a signalling pathway based on protein phosphorylation and can be activated by a wide range of factors. To investigate the function of the PI3K-AKT signalling pathway in antibacterial immunity, we analysed the gene expression level of three key factors (PI3K, AKT and FoxO) and innate immune factors in immune tissues at different time points after Vibrio parahaemolyticus and Staphylococcus aureus infection. Tissues analysis showed that PI3K, AKT, and FoxO were expressed at high levels in the intestinal, hemocytes and hepatopancreas. Moreover, the expression levels of PI3K, AKT and FoxO can be regulated postinfection by different pathogens. In hemocytes and the intestine, V. parahaemolyticus infection was found to regulate the levels of PI3K, AKT, and FoxO more rapidly; however, an S. aureus infection regulated the levels of these factors more rapidly in the hepatopancreas and gills. Analysis showed that V. parahaemolyticus and S. aureus infection caused changes in the gene expression level of crustin, caspase 3 and NF-κB. Therefore, PI3K-AKT regulates the downstream immune pathway differentially in different immune tissues and participates in the regulation of cell apoptosis and the inflammatory response by activating caspase and NF-κB, respectively, following infection with V. parahaemolyticus and S. aureus.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Vibrio parahaemolyticus / Palaemonidae / Enfermedades de los Peces Límite: Animals Idioma: En Revista: J Fish Dis Asunto de la revista: BIOLOGIA / MEDICINA VETERINARIA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Vibrio parahaemolyticus / Palaemonidae / Enfermedades de los Peces Límite: Animals Idioma: En Revista: J Fish Dis Asunto de la revista: BIOLOGIA / MEDICINA VETERINARIA Año: 2024 Tipo del documento: Article País de afiliación: China