Your browser doesn't support javascript.
loading
An Exome Capture-Based RNA-Sequencing Assay for Genome-Wide Identification and Prioritization of Clinically Important Fusions in Pediatric Tumors.
Buckley, Jonathan; Schmidt, Ryan J; Ostrow, Dejerianne; Maglinte, Dennis; Bootwalla, Moiz; Ruble, David; Govindarajan, Ananthanarayanan; Ji, Jianling; Kovach, Alexandra E; Orgel, Etan; Raca, Gordana; Navid, Fariba; Mascarenhas, Leo; Pawel, Bruce; Robison, Nathan; Gai, Xiaowu; Biegel, Jaclyn A.
Afiliación
  • Buckley J; Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California.
  • Schmidt RJ; Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California.
  • Ostrow D; Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California.
  • Maglinte D; Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California.
  • Bootwalla M; Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California.
  • Ruble D; Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California.
  • Govindarajan A; Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California.
  • Ji J; Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California.
  • Kovach AE; Keck School of Medicine of University of Southern California, Los Angeles, California; Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California.
  • Orgel E; Keck School of Medicine of University of Southern California, Los Angeles, California; Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California.
  • Raca G; Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California.
  • Navid F; Keck School of Medicine of University of Southern California, Los Angeles, California; Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California.
  • Mascarenhas L; Keck School of Medicine of University of Southern California, Los Angeles, California; Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California.
  • Pawel B; Keck School of Medicine of University of Southern California, Los Angeles, California; Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California.
  • Robison N; Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California.
  • Gai X; Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California.
  • Biegel JA; Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine of University of Southern California, Los Angeles, California. Electronic address: jbiegel@chla.usc.edu.
J Mol Diagn ; 26(2): 127-139, 2024 Feb.
Article en En | MEDLINE | ID: mdl-38008288
ABSTRACT
This study reports the development of an exome capture-based RNA-sequencing assay to detect recurring and novel fusions in hematologic, solid, and central nervous system tumors. The assay used Twist Comprehensive Exome capture with either fresh or formalin-fixed samples and a bioinformatic platform that provides fusion detection, prioritization, and downstream curation. A minimum of 50 million uniquely mapped reads, a consensus read alignment/fusion calling approach using four callers (Arriba, FusionCatcher, STAR-Fusion, and Dragen), and custom software were used to integrate, annotate, and rank the candidate fusion calls. In an evaluation of 50 samples, the number of calls varied substantially by caller, from a mean of 24.8 with STAR-Fusion to 259.6 with FusionCatcher; only 1.1% of calls were made by all four callers. Therefore a filtering and ranking algorithm was developed based on multiple criteria, including number of supporting reads, calling consensus, genes involved, and cross-reference against databases of known cancer-associated or likely false-positive fusions. This approach was highly effective in pinpointing known clinically relevant fusions, ranking them first in 47 of 50 samples (94%). Detection of pathogenic gene fusions in three diagnostically challenging cases highlights the importance of a genome-wide and nontargeted method for fusion detection in pediatric cancer.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Exoma / Neoplasias Límite: Child / Humans Idioma: En Revista: J Mol Diagn Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Exoma / Neoplasias Límite: Child / Humans Idioma: En Revista: J Mol Diagn Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article