Your browser doesn't support javascript.
loading
OTUD1 ameliorates cerebral ischemic injury through inhibiting inflammation by disrupting K63-linked deubiquitination of RIP2.
Zheng, Shengnan; Li, Yiquan; Song, Xiaomeng; Wu, Mengting; Yu, Lu; Huang, Gan; Liu, Tengfei; Zhang, Lei; Shang, Mingmei; Zhu, Qingfen; Gao, Chengjiang; Chen, Lin; Liu, Huiqing.
Afiliación
  • Zheng S; Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
  • Li Y; Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
  • Song X; Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
  • Wu M; Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
  • Yu L; Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
  • Huang G; Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
  • Liu T; Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
  • Zhang L; Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
  • Shang M; Rheumatology Unit, Department of Medicine, Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
  • Zhu Q; Shandong Institute for Food and Drug Control, Jinan, Shandong, 250012, People's Republic of China.
  • Gao C; Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
  • Chen L; Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China. linchen@sdu.edu.cn.
  • Liu H; Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, People's Republic of China. liuhuiqing@sdu.edu.cn.
J Neuroinflammation ; 20(1): 281, 2023 Nov 27.
Article en En | MEDLINE | ID: mdl-38012669
ABSTRACT

BACKGROUND:

Inflammatory response triggered by innate immunity plays a pivotal element in the progress of ischemic stroke. Receptor-interacting kinase 2 (RIP2) is implicated in maintaining immunity homeostasis and regulating inflammatory response. However, the underlying mechanism of RIP2 in ischemic stroke is still not well understood. Hence, the study investigated the role and the ubiquitination regulatory mechanism of RIP2 in ischemic stroke.

METHODS:

Focal cerebral ischemia was introduced by middle cerebral artery occlusion (MCAO) in wild-type (WT) and OTUD1-deficient (OTUD1-/-) mice, oxygen glucose deprivation and reoxygenation (OGD/R) models in BV2 cells and primary cultured astrocytes were performed for monitoring of experimental stroke. GSK2983559 (GSK559), a RIP2 inhibitor was intraventricularly administered 30 min before MCAO. Mice brain tissues were collected for TTC staining and histopathology. Protein expression of RIP2, OTUD1, p-NF-κB-p65 and IκBα was determined by western blot. Localization of RIP2 and OTUD1 was examined by immunofluorescence. The change of IL-1ß, IL-6 and TNF-α was detected by ELISA assay and quantitative real-time polymerase chain reaction. Immunoprecipitation and confocal microscopy were used to study the interaction of RIP2 and OTUD1. The activity of NF-κB was examined by dual-luciferase assay.

RESULTS:

Our results showed upregulated protein levels of RIP2 and OTUD1 in microglia and astrocytes in mice subjected to focal cerebral ischemia. Inhibition of RIP2 by GSK559 ameliorated the cerebral ischemic outcome by repressing the NF-κB activity and the inflammatory response. Mechanistically, OTUD1 interacted with RIP2 and sequentially removed the K63-linked polyubiquitin chains of RIP2, thereby inhibiting NF-κB activation. Furthermore, OTUD1 deficiency exacerbated cerebral ischemic injury in response to inflammation induced by RIP2 ubiquitination.

CONCLUSIONS:

These findings suggested that RIP2 mediated cerebral ischemic lesion via stimulating inflammatory response, and OTUD1 ameliorated brain injury after ischemia through inhibiting RIP2-induced NF-κB activation by specifically cleaving K63-linked ubiquitination of RIP2.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Isquemia Encefálica / Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor / Proteasas Ubiquitina-Específicas / Accidente Cerebrovascular Isquémico Límite: Animals Idioma: En Revista: J Neuroinflammation Asunto de la revista: NEUROLOGIA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Isquemia Encefálica / Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor / Proteasas Ubiquitina-Específicas / Accidente Cerebrovascular Isquémico Límite: Animals Idioma: En Revista: J Neuroinflammation Asunto de la revista: NEUROLOGIA Año: 2023 Tipo del documento: Article