Your browser doesn't support javascript.
loading
Node-downloadable frequency transfer system based on a mode-locked laser with over 100 km of fiber.
Opt Express ; 31(24): 39681-39694, 2023 Nov 20.
Article en En | MEDLINE | ID: mdl-38041284
ABSTRACT
To meet the requirements of time-frequency networks and enable frequency downloadability for nodes along the link, we demonstrated the extraction of stable frequency signals at nodes using a mode-locked laser under the condition of 100 km laboratory fiber. The node consists of a simple structure that utilizes widely used optoelectronic devices and enables plug-and-play applications. In addition, the node can recover frequency signals with multiple frequencies, which are useful for scenarios that require different frequencies. Here, we experimentally demonstrated a short-term frequency instability of 2.83 × 10-13@1 s and a long-term frequency instability of 1.18 × 10-15@10,000 s at the node, which is similar to that at the remote site of the frequency transfer system. At the same time, frequency signals with different frequencies also achieved stable extraction with the same performance at the node. Our results can support the distributed application under large-scale time-frequency networks.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2023 Tipo del documento: Article