Your browser doesn't support javascript.
loading
Zn-doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors.
Ribeiro, Geyse A C; de Lima, Scarllett L S; Santos, Karolinne E R; Mendonça, Jhonatam P; Macena, Pedro; Pessanha, Emanuel C; Cordeiro, Thallis C; Gardener, Jules; Solórzano, Guilhermo; Fonsaca, Jéssica E S; Domingues, Sergio H; Dos Santos, Clenilton C; Dourado, André H B; Tanaka, Auro A; da Silva, Anderson G M; Garcia, Marco A S.
Afiliación
  • Ribeiro GAC; Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA), São Luís, MA, Brazil.
  • de Lima SLS; Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil.
  • Santos KER; Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA), São Luís, MA, Brazil.
  • Mendonça JP; Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA), São Luís, MA, Brazil.
  • Macena P; Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil.
  • Pessanha EC; Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil.
  • Cordeiro TC; Centro de Ciências Exatas E Tecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, RJ, Brazil.
  • Gardener J; Center for Nanoscale Systems, School of Engineering and Applied Sciences, Harvard University, Cambridge, USA.
  • Solórzano G; Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil.
  • Fonsaca JES; Mackenzie Institute for Advanced Research in Graphene and Nanotechnologies - MackGraphe, Mackenzie Presbyterian University, São Paulo, SP, Brazil.
  • Domingues SH; Mackenzie Institute for Advanced Research in Graphene and Nanotechnologies - MackGraphe, Mackenzie Presbyterian University, São Paulo, SP, Brazil.
  • Dos Santos CC; Departament of Physics, Universidade Federal Do Maranhão (UFMA), São Luís, MA, Brazil.
  • Dourado AHB; São Carlos Institute of Chemistry, Universidade de São Paulo (USP), São Carlos, SP, Brazil.
  • Tanaka AA; Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA), São Luís, MA, Brazil.
  • da Silva AGM; Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil. agms@puc-rio.br.
  • Garcia MAS; Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA), São Luís, MA, Brazil. marco.suller@ufma.br.
Discov Nano ; 18(1): 147, 2023 Dec 04.
Article en En | MEDLINE | ID: mdl-38047970
ABSTRACT
MnOx-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was reported to produce Zn-doped MnOx nanowires with abundant defects and tunable small cross-sections, exhibiting an outstanding specific capacitance. More specifically, based on a facile hydrothermal strategy, zinc sites could be uniformly dispersed in the α-MnOx nanowires structure as a function of composition (0.3, 2.1, 4.3, and 7.6 wt.% Zn). Such a process avoided the formation of different crystalline phases during the synthesis. The reproducible method afforded uniform nanowires, in which the size of cross-sections decreased with the increase of Zn composition. Surprisingly, we found a volcano-type relationship between the storage performance and the Zn loading. In this case, we demonstrated that the highest performance material could be achieved by incorporating 2.1 wt.% Zn, exhibiting a remarkable specific capacitance of 1082.2 F.g-1 at a charge/discharge current density of 1.0 A g-1 in a 2.0 mol L-1 KOH electrolyte. The optimized material also afforded improved results for hybrid supercapacitors. Thus, the results presented herein shed new insights into preparing defective and controlled nanomaterials by a simple one-step method for energy storage applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Discov Nano Año: 2023 Tipo del documento: Article País de afiliación: Brasil

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Discov Nano Año: 2023 Tipo del documento: Article País de afiliación: Brasil