Your browser doesn't support javascript.
loading
Precise Methylation Yields Acceptor with Hydrogen-Bonding Network for High-Efficiency and Thermally Stable Polymer Solar Cells.
Wei, Weifei; Zhang, Cai'e; Chen, Zhanxiang; Chen, Wei; Ran, Guangliu; Pan, Guangjiu; Zhang, Wenkai; Müller-Buschbaum, Peter; Bo, Zhishan; Yang, Chuluo; Luo, Zhenghui.
Afiliación
  • Wei W; Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China.
  • Zhang C; Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China.
  • Chen Z; Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, China.
  • Chen W; Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China.
  • Ran G; Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, 518118, Shenzhen, China.
  • Pan G; Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, 100875, Beijing, China.
  • Zhang W; Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany.
  • Müller-Buschbaum P; Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, 100875, Beijing, China.
  • Bo Z; Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany.
  • Yang C; Technical University of Munich, Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstraße 1, 85748, Garching, Germany.
  • Luo Z; Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, China.
Angew Chem Int Ed Engl ; 63(6): e202315625, 2024 Feb 05.
Article en En | MEDLINE | ID: mdl-38100221
ABSTRACT
Utilizing intermolecular hydrogen-bonding interactions stands for an effective approach in advancing the efficiency and stability of small-molecule acceptors (SMAs) for polymer solar cells. Herein, we synthesized three SMAs (Qo1, Qo2, and Qo3) using indeno[1,2-b]quinoxalin-11-one (Qox) as the electron-deficient group, with the incorporation of a methylation strategy. Through crystallographic analysis, it is observed that two Qox-based methylated acceptors (Qo2 and Qo3) exhibit multiple hydrogen bond-assisted 3D network transport structures, in contrast to the 2D transport structure observed in gem-dichlorinated counterpart (Qo4). Notably, Qo2 exhibits multiple and stronger hydrogen-bonding interactions compared with Qo3. Consequently, PM6 Qo2 device realizes the highest power conversion efficiency (PCE) of 18.4 %, surpassing the efficiencies of devices based on Qo1 (15.8 %), Qo3 (16.7 %), and Qo4 (2.4 %). This remarkable PCE in PM6 Qo2 device can be primarily ascribed to the enhanced donor-acceptor miscibility, more favorable medium structure, and more efficient charge transfer and collection behavior. Moreover, the PM6 Qo2 device demonstrates exceptional thermal stability, retaining 82.8 % of its initial PCE after undergoing annealing at 65 °C for 250 hours. Our research showcases that precise methylation, particularly targeting the formation of intermolecular hydrogen-bonding interactions to tune crystal packing patterns, represents a promising strategy in the molecular design of efficient and stable SMAs.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: China