Your browser doesn't support javascript.
loading
Engineering 3D-Printed Bioresorbable Scaffold to Improve Non-Vascularized Fat Grafting: A Proof-of-Concept Study.
Jordao, Amélia; Cléret, Damien; Dhayer, Mélanie; Le Rest, Mégann; Cao, Shengheng; Rech, Alexandre; Azaroual, Nathalie; Drucbert, Anne-Sophie; Maboudou, Patrice; Dekiouk, Salim; Germain, Nicolas; Payen, Julien; Guerreschi, Pierre; Marchetti, Philippe.
Afiliación
  • Jordao A; UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France.
  • Cléret D; Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France.
  • Dhayer M; Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France.
  • Le Rest M; UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France.
  • Cao S; Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France.
  • Rech A; Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France.
  • Azaroual N; University of Lille, Faculté de Pharmacie, Plateau RMN, UFR3S, F-59000 Lille, France.
  • Drucbert AS; University of Lille, ULR 7365-GRITA-Groupe de Recherche Sur Les Formes Injectables Et Les Technologies Associées, F-59000 Lille, France.
  • Maboudou P; U 1008 Controlled Drug Delivery Systems and Biomaterials, Inserm, F-59000 Lille, France.
  • Dekiouk S; Service de Biochimie, CHU Lille, F-59000 Lille, France.
  • Germain N; UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France.
  • Payen J; Centre de Bio-Pathologie, Banque de Tissus, CHU Lille, F-59000 Lille, France.
  • Guerreschi P; UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France.
  • Marchetti P; Centre de Bio-Pathologie, Banque de Tissus, CHU Lille, F-59000 Lille, France.
Biomedicines ; 11(12)2023 Dec 18.
Article en En | MEDLINE | ID: mdl-38137558
ABSTRACT
Autologous fat grafting is the gold standard for treatment in patients with soft-tissue defects. However, the technique has a major limitation of unpredictable fat resorption due to insufficient blood supply in the initial phase after transplantation. To overcome this problem, we investigated the capability of a medical-grade poly L-lactide-co-poly ε-caprolactone (PLCL) scaffold to support adipose tissue and vascular regeneration. Deploying FDM 3D-printing, we produced a bioresorbable porous scaffold with interconnected pore networks to facilitate nutrient and oxygen diffusion. The compressive modulus of printed scaffold mimicked the mechanical properties of native adipose tissue. In vitro assays demonstrated that PLCL scaffolds or their degradation products supported differentiation of preadipocytes into viable mature adipocytes under appropriate induction. Interestingly, the chorioallantoic membrane assay revealed vascular invasion inside the porous scaffold, which represented a guiding structure for ingrowing blood vessels. Then, lipoaspirate-seeded scaffolds were transplanted subcutaneously into the dorsal region of immunocompetent rats (n = 16) for 1 or 2 months. The volume of adipose tissue was maintained inside the scaffold over time. Histomorphometric evaluation discovered small- and normal-sized perilipin+ adipocytes (no hypertrophy) classically organized into lobular structures inside the scaffold. Adipose tissue was surrounded by discrete layers of fibrous connective tissue associated with CD68+ macrophage patches around the scaffold filaments. Adipocyte viability, assessed via TUNEL staining, was sustained by the presence of a high number of CD31-positive vessels inside the scaffold, confirming the CAM results. Overall, our study provides proof that 3D-printed PLCL scaffolds can be used to improve fat graft volume preservation and vascularization, paving the way for new therapeutic options for soft-tissue defects.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Biomedicines Año: 2023 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Biomedicines Año: 2023 Tipo del documento: Article País de afiliación: Francia