Your browser doesn't support javascript.
loading
In Situ Pt Migration Enabled Resurrection of Electrocatalyst and Fuel Cell Device.
Lei, Hao; Cui, Mangwei; Cao, Jian; Li, Kaikai; Chen, Zuhuang; Sun, Ligang; Huang, Yan.
Afiliación
  • Lei H; State Key Laboratory of Advanced Welding and Joining, Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
  • Cui M; State Key Laboratory of Advanced Welding and Joining, Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
  • Cao J; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
  • Li K; State Key Laboratory of Advanced Welding and Joining, Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
  • Chen Z; State Key Laboratory of Advanced Welding and Joining, Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
  • Sun L; School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
  • Huang Y; State Key Laboratory of Advanced Welding and Joining, Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
Small ; 20(23): e2309068, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38149506
ABSTRACT
In direct methanol fuel cells (DMFCs), the poisoning of noble metals is considered to be a major impediment to their commercial development. Here, it is found that the loss of surface Pt is one main reason for the attenuation of catalyst performance during long-time methanol oxidation reaction (MOR). A strategy to realize in situ resurrection of the deactivated catalyst by migrating Pt atoms inside to the surface is innovatively proposed. A high-activity Pt-SnO2 is designed, whose MOR activity is resurrected to 97.4% of the initial value. Based on this, the multiple resurrection of a DMFC device is also achieved for the first time. This work provides a new approach for the solution of catalyst deactivation and the development of sustainable catalysts as well as fuel cells.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China