Your browser doesn't support javascript.
loading
Impact of climate change on snowpack dynamics in coastal Central-Western Greenland.
Bonsoms, Josep; Oliva, Marc; Alonso-González, Esteban; Revuelto, Jesús; López-Moreno, Juan I.
Afiliación
  • Bonsoms J; Department of Geography, Universitat de Barcelona, Barcelona, Spain. Electronic address: josepbonsoms5@ub.edu.
  • Oliva M; Department of Geography, Universitat de Barcelona, Barcelona, Spain.
  • Alonso-González E; Centre d'Etudes Spatiales de la Biosphère (CESBIO), Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse, France.
  • Revuelto J; Instituto Pirenaico de Ecología (IPE-CSIC), Campus de Aula Dei, Zaragoza, Spain.
  • López-Moreno JI; Instituto Pirenaico de Ecología (IPE-CSIC), Campus de Aula Dei, Zaragoza, Spain.
Sci Total Environ ; 913: 169616, 2024 Feb 25.
Article en En | MEDLINE | ID: mdl-38159743
ABSTRACT
Snow patterns in ice-free areas of Greenland play important roles in ecosystems. Within a changing climate, a comprehensive understanding of the snow responses to climate change is of interest to anticipate forthcoming dynamics in these areas. In this study, we analyze the future snowpack evolution of a polar maritime Arctic location, Qeqertarsuaq (Disko Island, Central-Western Greenland). A physically-based snow model (FSM2) is validated and forced with CMIP6 projections for SSP2-4.5 and SSP5-8.5 greenhouse gasses emission scenarios, using two models CanESM5 and MIROC6. The future snowpack evolution is assessed through four key seasonal (October to May) snow climate indicators snow depth, snow days, snowfall fraction and ablation rate. Comparison against the observed air temperature for the reference climate period demonstrates superior accuracies for MIROC6 SSP2.4-5, with anomalies at 19 %, compared to CanESM5 SSP5.8-5 (25 %) and CanESM5 SSP2.4-5 (78 %). In terms of precipitation, CanESM5 SSP2.4-5 and SSP2.4-5 exhibit smaller anomalies against the observed data (5 %) in contrast to MIROC6 SSP2.4-5 (15 %) and MIROC6 SSP2.8-5 (17 %). Results demonstrate distinct snowpack responses to climate change depending on the model and emission scenario. For CanESM5, seasonal snow depth anomalies with respect to the reference period range from - 38 % (SSP2-4.5, 2040-2050 period) to - 74 % (SSP5-8.5, 2090-2100 period). MIROC6 projects lower snowpack reductions, with a decrease ranging from - 38 % (SSP2-4.5, 2040-2050 period) to - 57 % (SSP5-8.5, 2090-2100 period). Similar reductions are anticipated for snowfall and snow days. Changes in the snowpack evolution are primarily driven by positive trends in downwelling longwave radiation and air temperature. The projected increase in precipitation by the mid to late 21st century will lead to more frequent rain-on-snow events, intensifying snowpack melting. These findings help enhance the comprehension of future snow dynamics in the ice-free zones of Greenland, as well as the associated hydrological and ecological changes.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article