Your browser doesn't support javascript.
loading
Epigenetic signature of ionizing radiation in therapy-related AML patients.
O'Brien, Gráinne; Cecotka, Agnieszka; Manola, Kalliopi N; Pagoni, Maria N; Polanska, Joanna; Badie, Christophe.
Afiliación
  • O'Brien G; Cancer Mechanisms and Biomarkers Group, Radiation Effects Department Radiation, Chemical & Environmental Hazards, Harwell Campus, Chilton, Didcot, Oxfordshire OX11 ORQ, UK Health Security Agency (UKHSA), United Kingdom.
  • Cecotka A; Department of Data Science and Engineering, Silesian University of Technology, 44-121 Gliwice, Poland.
  • Manola KN; Department of Biodiagnostic Sciences and Technologies, INRASTES, National Centre for Research' Demokritos', 15341 Agia Paraskevi, Greece.
  • Pagoni MN; Hematology-Lymphomas Department - BMT Unit, Evangelismos Hospital, 10676 Athens, Greece.
  • Polanska J; Department of Data Science and Engineering, Silesian University of Technology, 44-121 Gliwice, Poland.
  • Badie C; Cancer Mechanisms and Biomarkers Group, Radiation Effects Department Radiation, Chemical & Environmental Hazards, Harwell Campus, Chilton, Didcot, Oxfordshire OX11 ORQ, UK Health Security Agency (UKHSA), United Kingdom.
Heliyon ; 10(1): e23244, 2024 Jan 15.
Article en En | MEDLINE | ID: mdl-38163095
ABSTRACT
Therapy-related acute myeloid leukaemia (t-AML) is a late side effect of previous chemotherapy (ct-AML) and/or radiotherapy (rt-AML) or immunosuppressive treatment. t-AMLs, which account for ∼10-20 % of all AML cases, are extremely aggressive and have a poor prognosis compared to de novo AML. Our hypothesis is that exposure to radiation causes genome-wide epigenetic changes in rt-AML. An epigenome-wide association study was undertaken, measuring over 850K methylation sites across the genome from fifteen donors (five healthy, five de novo, and five t-AMLs). The study predominantly focussed on 94K sites that lie in CpG-rich gene promoter regions. Genome-wide hypomethylation was discovered in AML, primarily in intergenic regions. Additionally, genes specific to AML were identified with promoter hypermethylation. A two-step validation was conducted, both internally, using pyrosequencing to measure methylation levels in specific regions across fifteen primary samples, and externally, with an additional eight AML samples. We demonstrated that the MEST and GATA5 gene promoters, which were previously identified as tumour suppressors, were noticeably hypermethylated in rt-AML, as opposed to other subtypes of AML and control samples. These may indicate the epigenetic involvement in the development of rt-AML at the molecular level and could serve as potential targets for drug therapy in rt-AML.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Heliyon Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Heliyon Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido