Your browser doesn't support javascript.
loading
Predicting drug-protein interactions by preserving the graph information of multi source data.
Wei, Jiahao; Lu, Linzhang; Shen, Tie.
Afiliación
  • Wei J; School of Mathematical Sciences, Guizhou Normal University, Guiyang, 550025, China.
  • Lu L; School of Mathematical Sciences, Guizhou Normal University, Guiyang, 550025, China. lz@gznu.edu.cn.
  • Shen T; School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China. lz@gznu.edu.cn.
BMC Bioinformatics ; 25(1): 10, 2024 Jan 04.
Article en En | MEDLINE | ID: mdl-38177981
ABSTRACT
Examining potential drug-target interactions (DTIs) is a pivotal component of drug discovery and repurposing. Recently, there has been a significant rise in the use of computational techniques to predict DTIs. Nevertheless, previous investigations have predominantly concentrated on assessing either the connections between nodes or the consistency of the network's topological structure in isolation. Such one-sided approaches could severely hinder the accuracy of DTI predictions. In this study, we propose a novel method called TTGCN, which combines heterogeneous graph convolutional neural networks (GCN) and graph attention networks (GAT) to address the task of DTI prediction. TTGCN employs a two-tiered feature learning strategy, utilizing GAT and residual GCN (R-GCN) to extract drug and target embeddings from the diverse network, respectively. These drug and target embeddings are then fused through a mean-pooling layer. Finally, we employ an inductive matrix completion technique to forecast DTIs while preserving the network's node connectivity and topological structure. Our approach demonstrates superior performance in terms of area under the curve and area under the precision-recall curve in experimental comparisons, highlighting its significant advantages in predicting DTIs. Furthermore, case studies provide additional evidence of its ability to identify potential DTIs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Descubrimiento de Drogas / Aprendizaje Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Descubrimiento de Drogas / Aprendizaje Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: China