Your browser doesn't support javascript.
loading
Role of Rho-Associated Kinase in the Pathophysiology of Cerebral Cavernous Malformations.
Ayata, Cenk; Kim, Helen; Morrison, Leslie; Liao, James K; Gutierrez, Juan; Lopez-Toledano, Miguel; Carrazana, Enrique; Rabinowicz, Adrian L; Awad, Issam A.
Afiliación
  • Ayata C; From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California,
  • Kim H; From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California,
  • Morrison L; From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California,
  • Liao JK; From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California,
  • Gutierrez J; From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California,
  • Lopez-Toledano M; From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California,
  • Carrazana E; From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California,
  • Rabinowicz AL; From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California,
  • Awad IA; From the Neurovascular Research Unit (C.A.), Department of Radiology; Stroke Service, Department of Neurology (C.A.), Massachusetts General Hospital, Harvard Medical School, Boston; Center for Cerebrovascular Research (H.K.), Department of Anesthesia and Perioperative Care, University of California,
Neurol Genet ; 10(1): e200121, 2024 Feb.
Article en En | MEDLINE | ID: mdl-38179414
ABSTRACT
Cerebral cavernous malformations (CCMs) are vascular lesions characterized by a porous endothelium. The lack of a sufficient endothelial barrier can result in microbleeds and frank intracerebral hemorrhage. A primary mechanism for lesion development is a sequence variant in at least 1 of the 3 CCM genes (CCM1, CCM2, and CCM3), which influence various signaling pathways that lead to the CCM phenotype. A common downstream process associated with CCM gene loss of function involves overactivation of RhoA and its effector Rho-associated kinase (ROCK). In this study, we review RhoA/ROCK-related mechanisms involved in CCM pathophysiology as potential therapeutic targets. Literature searches were conducted in PubMed using combinations of search terms related to RhoA/ROCK and CCMs. In endothelial cells, CCM1, CCM2, and CCM3 proteins normally associate to form the CCM protein complex, which regulates the functions of a wide variety of protein targets (e.g., MAP3K3, SMURF1, SOK-1, and ICAP-1) that directly or indirectly increase RhoA/ROCK activity. Loss of CCM complex function and increased RhoA/ROCK activity can lead to the formation of stress fibers that contribute to endothelial junction instability. Other RhoA/ROCK-mediated pathophysiologic outcomes include a shift to a senescence-associated secretory phenotype (primarily mediated by ROCK2), which is characterized by endothelial cell migration, cell cycle arrest, extracellular matrix degradation, leukocyte chemotaxis, and inflammation. ROCK represents a potential therapeutic target, and direct (fasudil, NRL-1049) and indirect (statins) ROCK inhibitors have demonstrated various levels of efficacy in reducing lesion burden in preclinical models of CCM. Current (atorvastatin) and planned (NRL-1049) clinical studies will determine the efficacy of ROCK inhibitors for CCM in humans, for which no US Food and Drug Administration-approved or EU-approved pharmacologic treatment exists.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: Neurol Genet Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: Neurol Genet Año: 2024 Tipo del documento: Article