Your browser doesn't support javascript.
loading
Interactions Between Silver Nanoparticles and Culture Medium Biomolecules with Dose and Time Dependencies.
Vivas, Cristofher Victor; Duarte, Evandro Luiz; Barreto, Yan Borges; deOliveira, Cristiano Luis Pinto; Toma, Sergio Hiroshi; Santos, Jonnatan Julival; Araki, Koiti; Alencar, Adriano Mesquita; Bloise, Antonio Carlos.
Afiliación
  • Vivas CV; Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil. vivas@if.usp.br.
  • Duarte EL; Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil.
  • Barreto YB; Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil.
  • deOliveira CLP; Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil.
  • Toma SH; Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo, Brazil.
  • Santos JJ; Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo, Brazil.
  • Araki K; Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo, Brazil.
  • Alencar AM; Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil.
  • Bloise AC; Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil. acbloise@usp.br.
J Fluoresc ; 2024 Jan 06.
Article en En | MEDLINE | ID: mdl-38183590
ABSTRACT
The interaction between silver nanoparticles (AgNPs) and molecules producing coronas plays a key role in cytotoxicity mechanisms. Once adsorbed coronas determine the destiny of nanomaterials in vivo, their effective deployment in the biomedical field requires a comprehensive understanding of the dynamic interactions of biomolecules with nanoparticles. In this work, we characterized 40 nm AgNPs in three different nutritional cell media at different molar concentrations and incubation times to study the binding mechanism of molecules on surface nanoparticles. In addition, their cytotoxic effects have been studied in three cell lineages used as tissue regeneration models FN1, HUV-EC-C, RAW 264.7. According to the data, when biomolecules from DMEM medium were in contact with AgNPs, agglomeration and precipitation occurred. However, FBS medium proteins indicated the formation of coronas over the nanoparticles. Nonetheless, little adsorption of molecules around the nanoparticles was observed when compared to DMEM supplemented with 10% FBS. These findings indicate that when nanoparticles and bioproteins from supplemented media interact, inorganic salts from DMEM contribute to produce large bio-coronas, the size of which varies with the concentration and time. The static quenching mechanism was shown to be responsible for the fluorescence quenching of the bioprotein aggregates on the AgNPs surface. The calculated bioprotein-nanoparticle surface binding constants were on the order of 105 M-1 at 37 °C, with hydrophobic interactions driven by enthalpy and entropy playing a role, as confirmed by thermodynamic analysis. Cytotoxicity data showed a systematic degrowth in the viable cell population as the number of nanoparticles increased and the diameter of coronas decreased. Cytotoxic intervals associated with half decrease of cell population were established for AgNPs molar concentration of 75 µM for 24 h and 50 µM for 48 h. In summary, through the cytotoxicity mechanism of bio-coronas we are able to manipulate cells' expansion rates to promote specific processes, such inflammatory mechanisms, at different time instants.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Fluoresc Asunto de la revista: BIOFISICA Año: 2024 Tipo del documento: Article País de afiliación: Brasil

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Fluoresc Asunto de la revista: BIOFISICA Año: 2024 Tipo del documento: Article País de afiliación: Brasil