Your browser doesn't support javascript.
loading
Machine and deep learning models for accurate detection of ischemia and scar with myocardial blood flow positron emission tomography imaging.
Berman, Daniel; Hunter, Chad; Hossain, Alomgir; Yao, Jason; Workman, Emily; Guan, Steven; Strickhart, Laura; Beanlands, Rob; Slater, David; deKemp, Robert A.
Afiliación
  • Berman D; The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102, USA.
  • Hunter C; University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, K1Y 4W7, Canada.
  • Hossain A; University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, K1Y 4W7, Canada; The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada.
  • Yao J; University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, K1Y 4W7, Canada.
  • Workman E; The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102, USA.
  • Guan S; The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102, USA.
  • Strickhart L; The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102, USA.
  • Beanlands R; University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, K1Y 4W7, Canada.
  • Slater D; The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102, USA.
  • deKemp RA; University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, K1Y 4W7, Canada. Electronic address: radekemp@ottawaheart.ca.
J Nucl Cardiol ; 32: 101797, 2024 Feb.
Article en En | MEDLINE | ID: mdl-38185409
ABSTRACT

BACKGROUND:

Quantification of myocardial blood flow (MBF) is used for the noninvasive diagnosis of patients with coronary artery disease (CAD). This study compared traditional statistics, machine learning, and deep learning techniques in their ability to diagnose disease using only the rest and stress MBF values.

METHODS:

This study included 3245 rest and stress rubidium-82 positron emission tomography (PET) studies and matching diagnostic labels from perfusion reports. Standard logistic regression, lasso logistic regression, support vector machine, random forest, multilayer perceptron, and dense U-Net were compared for per-patient detection and per-vessel localization of scars and ischemia.

RESULTS:

Receiver-operator characteristic area under the curve (AUC) of machine learning models was significantly higher than those of traditional statistics models for per-patient detection of disease (0.92-0.95 vs. 0.87) but not for per-vessel localization of ischemia or scar. Random forest showed the highest AUC = 0.95 among the different models compared. On the final hold-out set for generalizability, random forest showed an AUC of 0.92 for detection and 0.89 for localization of perfusion abnormalities.

CONCLUSIONS:

For per-vessel localization, simple models trained on segmental data performed similarly to a convolutional neural network trained on polar-map data, highlighting the need to justify the use of complex predictive algorithms through comparison with simpler methods.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cicatriz / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: J Nucl Cardiol Asunto de la revista: CARDIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cicatriz / Aprendizaje Profundo Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: J Nucl Cardiol Asunto de la revista: CARDIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos