Your browser doesn't support javascript.
loading
NanoDeep: a deep learning framework for nanopore adaptive sampling on microbial sequencing.
Lin, Yusen; Zhang, Yongjun; Sun, Hang; Jiang, Hang; Zhao, Xing; Teng, Xiaojuan; Lin, Jingxia; Shu, Bowen; Sun, Hao; Liao, Yuhui; Zhou, Jiajian.
Afiliación
  • Lin Y; Dermatology Hospital, Southern Medical University, Guangzhou, China.
  • Zhang Y; Dermatology Hospital, Southern Medical University, Guangzhou, China.
  • Sun H; Dermatology Hospital, Southern Medical University, Guangzhou, China.
  • Jiang H; Dermatology Hospital, Southern Medical University, Guangzhou, China.
  • Zhao X; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China.
  • Teng X; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China.
  • Lin J; Dermatology Hospital, Southern Medical University, Guangzhou, China.
  • Shu B; Dermatology Hospital, Southern Medical University, Guangzhou, China.
  • Sun H; Dermatology Hospital, Southern Medical University, Guangzhou, China.
  • Liao Y; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China.
  • Zhou J; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China.
Brief Bioinform ; 25(1)2023 11 22.
Article en En | MEDLINE | ID: mdl-38189540
ABSTRACT
Nanopore sequencers can enrich or deplete the targeted DNA molecules in a library by reversing the voltage across individual nanopores. However, it requires substantial computational resources to achieve rapid operations in parallel at read-time sequencing. We present a deep learning framework, NanoDeep, to overcome these limitations by incorporating convolutional neural network and squeeze and excitation. We first showed that the raw squiggle derived from native DNA sequences determines the origin of microbial and human genomes. Then, we demonstrated that NanoDeep successfully classified bacterial reads from the pooled library with human sequence and showed enrichment for bacterial sequence compared with routine nanopore sequencing setting. Further, we showed that NanoDeep improves the sequencing efficiency and preserves the fidelity of bacterial genomes in the mock sample. In addition, NanoDeep performs well in the enrichment of metagenome sequences of gut samples, showing its potential applications in the enrichment of unknown microbiota. Our toolkit is available at https//github.com/lysovosyl/NanoDeep.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Nanoporos / Aprendizaje Profundo / Secuenciación de Nanoporos Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Nanoporos / Aprendizaje Profundo / Secuenciación de Nanoporos Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article País de afiliación: China