Your browser doesn't support javascript.
loading
Integration of federated learning with IoT for smart cities applications, challenges, and solutions.
Ghadi, Yazeed Yasin; Mazhar, Tehseen; Shah, Syed Faisal Abbas; Haq, Inayatul; Ahmad, Wasim; Ouahada, Khmaies; Hamam, Habib.
Afiliación
  • Ghadi YY; Department of Computer Science and Software Engineering, Al Ain University, Abu Dhabi, UAE.
  • Mazhar T; Department of Computer Science, Virtual University of Pakistan, Lahore, Punjab, Pakistan.
  • Shah SFA; Department of Computer Science, Virtual University of Pakistan, Lahore, Punjab, Pakistan.
  • Haq I; School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, China.
  • Ahmad W; Department of Computer Science and Information Technology, University of Malakand, Chakdara, Dir, Pakistan.
  • Ouahada K; School of Electrical Engineering, Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg, South Africa.
  • Hamam H; School of Electrical Engineering, Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg, South Africa.
PeerJ Comput Sci ; 9: e1657, 2023.
Article en En | MEDLINE | ID: mdl-38192447
ABSTRACT
In the past few years, privacy concerns have grown, making the financial models of businesses more vulnerable to attack. In many cases, it is hard to emphasize the importance of monitoring things in real-time with data from Internet of Things (IoT) devices. The people who make the IoT devices and those who use them face big problems when they try to use Artificial Intelligence (AI) techniques in real-world applications, where data must be collected and processed at a central location. Federated learning (FL) has made a decentralized, cooperative AI system that can be used by many IoT apps that use AI. It is possible because it can train AI on IoT devices that are spread out and do not need to share data. FL allows local models to be trained on local data and share their knowledge to improve a global model. Also, shared learning allows models from all over the world to be trained using data from all over the world. This article looks at the IoT in all of its forms, including "smart" businesses, "smart" cities, "smart" transportation, and "smart" healthcare. This study looks at the safety problems that the federated learning with IoT (FL-IoT) area has brought to market. This research is needed to explore because federated learning is a new technique, and a small amount of work is done on challenges faced during integration with IoT. This research also helps in the real world in such applications where encrypted data must be sent from one place to another. Researchers and graduate students are the audience of our article.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: PeerJ Comput Sci Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: PeerJ Comput Sci Año: 2023 Tipo del documento: Article