Your browser doesn't support javascript.
loading
Copious Dislocations Defect in Amorphous/Crystalline/Amorphous Sandwiched Structure P-NiMoO4 Electrocatalyst toward Enhanced Hydrogen Evolution Reaction.
Zhang, Kai; Su, Qingmei; Shi, Weihao; Lv, Yvjie; Zhu, Rongrong; Wang, Zhiyong; Zhao, Wenqi; Zhang, Miao; Ding, Shukai; Ma, Shufang; Du, Gaohui; Xu, Bingshe.
Afiliación
  • Zhang K; School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
  • Su Q; Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China.
  • Shi W; Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China.
  • Lv Y; School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
  • Zhu R; Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China.
  • Wang Z; School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
  • Zhao W; Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China.
  • Zhang M; School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
  • Ding S; Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China.
  • Ma S; Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China.
  • Du G; Beijing University of Technology, Chaoyang District, Beijing 100124, China.
  • Xu B; Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China.
ACS Nano ; 18(4): 3791-3800, 2024 Jan 30.
Article en En | MEDLINE | ID: mdl-38226921
ABSTRACT
The design and synthesis of efficient, inexpensive, and long-term stable heterostructured electrocatalysts with high-density dislocations for hydrogen evolution reaction in alkaline media and seawater are still a great challenge. An amorphous/crystalline/amorphous sandwiched structure with abundant dislocations were synthesized through thermal phosphidation strategies. The dislocations play an important role in the hydrogen evolution reactions. Copious dislocation defects, combined with cracks, and the synergistic interfacial effect between crystalline phase and amorphous phase regulate the electronic structure of electrocatalyst, provide more active sites, and thus endow the electrocatalysts with excellent catalytic activity under alkaline water and seawater. The overpotentials of P-NiMoO4 at 10 mA/cm2 in 1 M KOH aqueous solution and seawater are 45 and 75 mV, respectively. Additionally, the P-NiMoO4 electrocatalyst exhibits long-term stability over 100 h. This study provides a simple approach for synthesizing amorphous/crystalline/amorphous sandwiched non-noble-metal electrocatalysts with abundant dislocations for hydrogen evolution reaction.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article País de afiliación: China