Your browser doesn't support javascript.
loading
Oral cancer cell to endothelial cell communication via exosomal miR-21/RMND5A pathway.
Sun, Yu-Qi; Wang, Bing; Zheng, Lin-Wei; Zhao, Ji-Hong; Ren, Jian-Gang.
Afiliación
  • Sun YQ; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, No. 237 Luoyu Road, Wuhan, 430079, China.
  • Wang B; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, No. 237 Luoyu Road, Wuhan, 430079, China.
  • Zheng LW; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, No. 237 Luoyu Road, Wuhan, 430079, China.
  • Zhao JH; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, No. 237 Luoyu Road, Wuhan, 430079, China. jhzhao988@whu.edu.cn.
  • Ren JG; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China. jhzhao988@whu.edu.cn.
BMC Oral Health ; 24(1): 82, 2024 Jan 16.
Article en En | MEDLINE | ID: mdl-38229133
ABSTRACT
Required for meiotic nuclear division 5 homolog A (RMND5A), a novel ubiquitin E3 Ligase, has been reported to correlate with poor prognosis of several cancers. However, its role in endothelial cells has not been reported. In this study, overexpression of RMND5A in human umbilical vein endothelial cells (HUVECs) was performed via lentiviral infection, followed by MTT, would healing and tube formation assay as well as signaling analysis. Moreover, crosstalk between HUVECs and oral squamous cell carcinoma (OSCC) cells was investigated by indirect co-culture with condition medium or tumor cell derived exosomes. Our results showed that overexpression of RMND5A reduced the proliferation, migration and tube formation ability of HUVECs by inhibiting the activation of ERK and NF-κB pathway. Interestingly, OSCC cells can inhibit RMND5A expression of endothelial cells via exosomal miR-21. In summary, our present study unveils that OSCC cells can activate endothelial cells via exosomal miR-21/RMND5A pathway to promote angiogenesis, which may provide novel therapeutic targets for the treatment of OSCC.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias de la Boca / Carcinoma de Células Escamosas / MicroARNs Límite: Humans Idioma: En Revista: BMC Oral Health Asunto de la revista: ODONTOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias de la Boca / Carcinoma de Células Escamosas / MicroARNs Límite: Humans Idioma: En Revista: BMC Oral Health Asunto de la revista: ODONTOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China