Your browser doesn't support javascript.
loading
Sulfur dioxide in the mid-infrared transmission spectrum of WASP-39b.
Powell, Diana; Feinstein, Adina D; Lee, Elspeth K H; Zhang, Michael; Tsai, Shang-Min; Taylor, Jake; Kirk, James; Bell, Taylor; Barstow, Joanna K; Gao, Peter; Bean, Jacob L; Blecic, Jasmina; Chubb, Katy L; Crossfield, Ian J M; Jordan, Sean; Kitzmann, Daniel; Moran, Sarah E; Morello, Giuseppe; Moses, Julianne I; Welbanks, Luis; Yang, Jeehyun; Zhang, Xi; Ahrer, Eva-Maria; Bello-Arufe, Aaron; Brande, Jonathan; Casewell, S L; Crouzet, Nicolas; Cubillos, Patricio E; Demory, Brice-Olivier; Dyrek, Achrène; Flagg, Laura; Hu, Renyu; Inglis, Julie; Jones, Kathryn D; Kreidberg, Laura; López-Morales, Mercedes; Lagage, Pierre-Olivier; Meier Valdés, Erik A; Miguel, Yamila; Parmentier, Vivien; Piette, Anjali A A; Rackham, Benjamin V; Radica, Michael; Redfield, Seth; Stevenson, Kevin B; Wakeford, Hannah R; Aggarwal, Keshav; Alam, Munazza K; Batalha, Natalie M; Batalha, Natasha E.
Afiliación
  • Powell D; Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA. diana.powell@uchicago.edu.
  • Feinstein AD; Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL, USA. diana.powell@uchicago.edu.
  • Lee EKH; Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL, USA.
  • Zhang M; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, USA.
  • Tsai SM; Center for Space and Habitability, University of Bern, Bern, Switzerland.
  • Taylor J; Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL, USA.
  • Kirk J; Department of Earth Sciences, University of California, Riverside, Riverside, CA, USA.
  • Bell T; Department of Physics, University of Oxford, Oxford, UK.
  • Barstow JK; Institut Trottier de Recherche sur les Exoplanètes, Université de Montréal, Montréal, Quebec, Canada.
  • Gao P; Département de Physique, Université de Montréal, Montréal, Quebec, Canada.
  • Bean JL; Department of Physics, Imperial College London, London, UK.
  • Blecic J; Bay Area Environmental Research Institute, NASA Ames Research Center, Moffett Field, CA, USA.
  • Chubb KL; Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA, USA.
  • Crossfield IJM; School of Physical Sciences, The Open University, Milton Keynes, UK.
  • Jordan S; Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA.
  • Kitzmann D; Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL, USA.
  • Moran SE; Department of Physics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
  • Morello G; Center for Astro, Particle, and Planetary Physics (CAP3), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
  • Moses JI; Centre for Exoplanet Science, University of St Andrews, St Andrews, UK.
  • Welbanks L; Department of Physics & Astronomy, University of Kansas, Lawrence, KS, USA.
  • Yang J; Institute of Astronomy, University of Cambridge, Cambridge, UK.
  • Zhang X; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, USA.
  • Ahrer EM; Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA.
  • Bello-Arufe A; Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden.
  • Brande J; Instituto de Astrofísica de Canarias (IAC), Tenerife, Spain.
  • Casewell SL; INAF - Palermo Astronomical Observatory, Palermo, Italy.
  • Crouzet N; Space Science Institute, Boulder, CO, USA.
  • Cubillos PE; School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA.
  • Demory BO; Planetary Sciences Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Dyrek A; Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA.
  • Flagg L; Centre for Exoplanets and Habitability, University of Warwick, Coventry, UK.
  • Hu R; Department of Physics, University of Warwick, Coventry, UK.
  • Inglis J; Astrophysics Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Jones KD; Department of Physics & Astronomy, University of Kansas, Lawrence, KS, USA.
  • Kreidberg L; School of Physics and Astronomy, University of Leicester, Leicester, UK.
  • López-Morales M; Leiden Observatory, University of Leiden, Leiden, The Netherlands.
  • Lagage PO; INAF - Turin Astrophysical Observatory, Pino Torinese, Italy.
  • Meier Valdés EA; Space Research Institute, Austrian Academy of Sciences, Graz, Austria.
  • Miguel Y; Center for Space and Habitability, University of Bern, Bern, Switzerland.
  • Parmentier V; Space and Planetary Sciences, Institute of Physics, University of Bern, Bern, Switzerland.
  • Piette AAA; Université Paris-Saclay, CEA, CNRS, AIM, Gif-sur-Yvette, France.
  • Rackham BV; Department of Astronomy, Cornell University, Ithaca, NY, USA.
  • Radica M; Carl Sagan Institute, Cornell University, Ithaca, NY, USA.
  • Redfield S; Astrophysics Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Stevenson KB; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
  • Wakeford HR; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
  • Aggarwal K; Center for Space and Habitability, University of Bern, Bern, Switzerland.
  • Alam MK; Max Planck Institute for Astronomy, Heidelberg, Germany.
  • Batalha NM; Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA.
  • Batalha NE; Université Paris-Saclay, CEA, CNRS, AIM, Gif-sur-Yvette, France.
Nature ; 626(8001): 979-983, 2024 Feb.
Article en En | MEDLINE | ID: mdl-38232945
ABSTRACT
The recent inference of sulfur dioxide (SO2) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations1-3 suggests that photochemistry is a key process in high-temperature exoplanet atmospheres4. This is because of the low (<1 ppb) abundance of SO2 under thermochemical equilibrium compared with that produced from the photochemistry of H2O and H2S (1-10 ppm)4-9. However, the SO2 inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.05 µm and, therefore, the detection of other SO2 absorption bands at different wavelengths is needed to better constrain the SO2 abundance. Here we report the detection of SO2 spectral features at 7.7 and 8.5 µm in the 5-12-µm transmission spectrum of WASP-39b measured by the JWST Mid-Infrared Instrument (MIRI) Low Resolution Spectrometer (LRS)10. Our observations suggest an abundance of SO2 of 0.5-25 ppm (1σ range), consistent with previous findings4. As well as SO2, we find broad water-vapour absorption features, as well as an unexplained decrease in the transit depth at wavelengths longer than 10 µm. Fitting the spectrum with a grid of atmospheric forward models, we derive an atmospheric heavy-element content (metallicity) for WASP-39b of approximately 7.1-8.0 times solar and demonstrate that photochemistry shapes the spectra of WASP-39b across a broad wavelength range.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos