Your browser doesn't support javascript.
loading
Systematic review using a spiral approach with machine learning.
Saeidmehr, Amirhossein; Steel, Piers David Gareth; Samavati, Faramarz F.
Afiliación
  • Saeidmehr A; Computer Science Department, University of Calgary, 2500 University Dr., Calgary, Canada. amir.saeidmehr@cpsc.ucalgary.ca.
  • Steel PDG; Haskayne School of Business, University of Calgary, 2500 University Dr., Calgary, Canada.
  • Samavati FF; Computer Science Department, University of Calgary, 2500 University Dr., Calgary, Canada.
Syst Rev ; 13(1): 32, 2024 01 17.
Article en En | MEDLINE | ID: mdl-38233959
ABSTRACT
With the accelerating growth of the academic corpus, doubling every 9 years, machine learning is a promising avenue to make systematic review manageable. Though several notable advancements have already been made, the incorporation of machine learning is less than optimal, still relying on a sequential, staged process designed to accommodate a purely human approach, exemplified by PRISMA. Here, we test a spiral, alternating or oscillating approach, where full-text screening is done intermittently with title/abstract screening, which we examine in three datasets by simulation under 360 conditions comprised of different algorithmic classifiers, feature extractions, prioritization rules, data types, and information provided (e.g., title/abstract, full-text included). Overwhelmingly, the results favored a spiral processing approach with logistic regression, TF-IDF for vectorization, and maximum probability for prioritization. Results demonstrate up to a 90% improvement over traditional machine learning methodologies, especially for databases with fewer eligible articles. With these advancements, the screening component of most systematic reviews should remain functionally achievable for another one to two decades.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Aprendizaje Automático / Revisiones Sistemáticas como Asunto Tipo de estudio: Systematic_reviews Idioma: En Revista: Syst Rev Año: 2024 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Aprendizaje Automático / Revisiones Sistemáticas como Asunto Tipo de estudio: Systematic_reviews Idioma: En Revista: Syst Rev Año: 2024 Tipo del documento: Article País de afiliación: Canadá