Your browser doesn't support javascript.
loading
Behavioral screening of conserved RNA-binding proteins reveals CEY-1/YBX RNA-binding protein dysfunction leads to impairments in memory and cognition.
Hayden, Ashley N; Brandel, Katie L; Merlau, Paul R; Vijayakumar, Priyadharshini; Leptich, Emily J; Pietryk, Edward W; Gaytan, Elizabeth S; Ni, Connie W; Chao, Hsiao-Tuan; Rosenfeld, Jill A; Arey, Rachel N.
Afiliación
  • Hayden AN; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030.
  • Brandel KL; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030.
  • Merlau PR; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030.
  • Vijayakumar P; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030.
  • Leptich EJ; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030.
  • Pietryk EW; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030.
  • Gaytan ES; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030.
  • Ni CW; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030.
  • Chao HT; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030.
  • Rosenfeld JA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030.
  • Arey RN; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030.
bioRxiv ; 2024 May 02.
Article en En | MEDLINE | ID: mdl-38260399
ABSTRACT
RNA-binding proteins (RBPs) regulate translation and plasticity which are required for memory. RBP dysfunction has been linked to a range of neurological disorders where cognitive impairments are a key symptom. However, of the 2,000 RBPs in the human genome, many are uncharacterized with regards to neurological phenotypes. To address this, we used the model organism C. elegans to assess the role of 20 conserved RBPs in memory. We identified eight previously uncharacterized memory regulators, three of which are in the C. elegans Y-Box (CEY) RBP family. Of these, we determined that cey-1 is the closest ortholog to the mammalian Y-Box (YBX) RBPs. We found that CEY-1 is both necessary in the nervous system for memory ability and sufficient to increase memory. Leveraging human datasets, we found both copy number variation losses and single nucleotide variants in YBX1 and YBX3 in individuals with neurological symptoms. We identified one predicted deleterious YBX3 variant of unknown significance, p.Asn127Tyr, in two individuals with neurological symptoms. Introducing this variant into endogenous cey-1 locus caused memory deficits in the worm. We further generated two humanized worm lines expressing human YBX3 or YBX1 at the cey-1 locus to test evolutionary conservation of YBXs in memory and the potential functional significance of the p.Asn127Tyr variant. Both YBX1/3 can functionally replace cey-1, and introduction of p.Asn127Tyr into the humanized YBX3 locus caused memory deficits. Our study highlights the worm as a model to reveal memory regulators and identifies YBX dysfunction as a potential new source of rare neurological disease.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article