Your browser doesn't support javascript.
loading
Bright Nonblinking Photoluminescence with Blinking Lifetime from a Nanocavity-Coupled Quantum Dot.
Wang, Zhiyuan; Tang, Jianwei; Han, Jiahao; Xia, Juan; Ma, Tianzi; Chen, Xue-Wen.
Afiliación
  • Wang Z; School of Physics, Wuhan National Laboratory for Optoelectronics, Institute for Quantum Science and Engineering and Hubei Key Laboratory of Gravitation and Quantum Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
  • Tang J; School of Physics, Wuhan National Laboratory for Optoelectronics, Institute for Quantum Science and Engineering and Hubei Key Laboratory of Gravitation and Quantum Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
  • Han J; Wuhan Institute of Quantum Technology, Wuhan 430206, P. R. China.
  • Xia J; School of Physics, Wuhan National Laboratory for Optoelectronics, Institute for Quantum Science and Engineering and Hubei Key Laboratory of Gravitation and Quantum Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
  • Ma T; School of Physics, Wuhan National Laboratory for Optoelectronics, Institute for Quantum Science and Engineering and Hubei Key Laboratory of Gravitation and Quantum Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
  • Chen XW; School of Physics, Wuhan National Laboratory for Optoelectronics, Institute for Quantum Science and Engineering and Hubei Key Laboratory of Gravitation and Quantum Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
Nano Lett ; 24(5): 1761-1768, 2024 Feb 07.
Article en En | MEDLINE | ID: mdl-38261791
ABSTRACT
Colloidal quantum dots (QDs) are excellent luminescent nanomaterials for many optoelectronic applications. However, photoluminescence blinking has limited their practical use. Coupling QDs to plasmonic nanostructures shows potential in suppressing blinking. However, the underlying mechanism remains unclear and debated, hampering the development of bright nonblinking dots. Here, by deterministically coupling a QD to a plasmonic nanocavity, we clarify the mechanism and demonstrate unprecedented single-QD brightness. In particular, we report for the first time that a blinking QD could obtain nonblinking photoluminescence with a blinking lifetime through coupling to the nanocavity. We show that the plasmon-enhanced radiative decay outcompetes the nonradiative Auger process, enabling similar quantum yields for charged and neutral excitons in the same dot. Meanwhile, we demonstrate a record photon detection rate of 17 MHz from a colloidal QD, indicating an experimental photon generation rate of more than 500 MHz. These findings pave the way for ultrabright nonblinking QDs, benefiting diverse QD-based applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2024 Tipo del documento: Article